我有一个 3d 数组
A = np.random.random((4,4,3))
和一个索引矩阵
B = np.int_(np.random.random((4,4))*3)
如何根据索引矩阵 B 从 A 获取二维数组?
一般来说,如何从一个 ND 数组和一个 N-1 维索引数组中得到一个 N-1 维数组?
我有一个 3d 数组
A = np.random.random((4,4,3))
和一个索引矩阵
B = np.int_(np.random.random((4,4))*3)
如何根据索引矩阵 B 从 A 获取二维数组?
一般来说,如何从一个 ND 数组和一个 N-1 维索引数组中得到一个 N-1 维数组?
举个例子:
>>> A = np.random.randint(0,10,(3,3,2))
>>> A
array([[[0, 1],
[8, 2],
[6, 4]],
[[1, 0],
[6, 9],
[7, 7]],
[[1, 2],
[2, 2],
[9, 7]]])
使用花哨的索引来获取简单的索引。请注意,所有索引必须具有相同的形状,并且每个索引的形状将是返回的内容。
>>> ind = np.arange(2)
>>> A[ind,ind,ind]
array([0, 9]) #Index (0,0,0) and (1,1,1)
>>> ind = np.arange(2).reshape(2,1)
>>> A[ind,ind,ind]
array([[0],
[9]])
因此,对于您的示例,我们需要为前两个维度提供网格:
>>> A = np.random.random((4,4,3))
>>> B = np.int_(np.random.random((4,4))*3)
>>> A
array([[[ 0.95158697, 0.37643036, 0.29175815],
[ 0.84093397, 0.53453123, 0.64183715],
[ 0.31189496, 0.06281937, 0.10008886],
[ 0.79784114, 0.26428462, 0.87899921]],
[[ 0.04498205, 0.63823379, 0.48130828],
[ 0.93302194, 0.91964805, 0.05975115],
[ 0.55686047, 0.02692168, 0.31065731],
[ 0.92822499, 0.74771321, 0.03055592]],
[[ 0.24849139, 0.42819062, 0.14640117],
[ 0.92420031, 0.87483486, 0.51313695],
[ 0.68414428, 0.86867423, 0.96176415],
[ 0.98072548, 0.16939697, 0.19117458]],
[[ 0.71009607, 0.23057644, 0.80725518],
[ 0.01932983, 0.36680718, 0.46692839],
[ 0.51729835, 0.16073775, 0.77768313],
[ 0.8591955 , 0.81561797, 0.90633695]]])
>>> B
array([[1, 2, 0, 0],
[1, 2, 0, 1],
[2, 1, 1, 1],
[1, 2, 1, 2]])
>>> x,y = np.meshgrid(np.arange(A.shape[0]),np.arange(A.shape[1]))
>>> x
array([[0, 1, 2, 3],
[0, 1, 2, 3],
[0, 1, 2, 3],
[0, 1, 2, 3]])
>>> y
array([[0, 0, 0, 0],
[1, 1, 1, 1],
[2, 2, 2, 2],
[3, 3, 3, 3]])
>>> A[x,y,B]
array([[ 0.37643036, 0.48130828, 0.24849139, 0.71009607],
[ 0.53453123, 0.05975115, 0.92420031, 0.36680718],
[ 0.10008886, 0.02692168, 0.86867423, 0.16073775],
[ 0.26428462, 0.03055592, 0.16939697, 0.90633695]])