我正在寻找一段体面的代码,以便在我的应用程序中使用其中一种算法。我找到了这个例子:http ://rosettacode.org/wiki/K-d_tree#C 但是当我把代码放在 xcode 中时,我得到一个错误,例如:
“使用未声明的标识符”,“预期的';' 在声明的最后”。我猜是缺少头文件?
我正在寻找一段体面的代码,以便在我的应用程序中使用其中一种算法。我找到了这个例子:http ://rosettacode.org/wiki/K-d_tree#C 但是当我把代码放在 xcode 中时,我得到一个错误,例如:
“使用未声明的标识符”,“预期的';' 在声明的最后”。我猜是缺少头文件?
我从链接中复制了代码并做了一个小的编辑,将“swap”从一个内联嵌套函数移动到一个静态函数。使用“gcc -C99 file.c”编译,编译成功。所以,不,它不需要一些包含文件。也许你贴错了。
如果您对这个答案感到满意,您可以接受。谢谢。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#define MAX_DIM 3
struct kd_node_t{
double x[MAX_DIM];
struct kd_node_t *left, *right;
};
inline double
dist(struct kd_node_t *a, struct kd_node_t *b, int dim)
{
double t, d = 0;
while (dim--) {
t = a->x[dim] - b->x[dim];
d += t * t;
}
return d;
}
static void swap(struct kd_node_t *x, struct kd_node_t *y) {
double tmp[MAX_DIM];
memcpy(tmp, x->x, sizeof(tmp));
memcpy(x->x, y->x, sizeof(tmp));
memcpy(y->x, tmp, sizeof(tmp));
}
/* see quickselect method */
struct kd_node_t*
find_median(struct kd_node_t *start, struct kd_node_t *end, int idx)
{
if (end <= start) return NULL;
if (end == start + 1)
return start;
struct kd_node_t *p, *store, *md = start + (end - start) / 2;
double pivot;
while (1) {
pivot = md->x[idx];
swap(md, end - 1);
for (store = p = start; p < end; p++) {
if (p->x[idx] < pivot) {
if (p != store)
swap(p, store);
store++;
}
}
swap(store, end - 1);
/* median has duplicate values */
if (store->x[idx] == md->x[idx])
return md;
if (store > md) end = store;
else start = store;
}
}
struct kd_node_t*
make_tree(struct kd_node_t *t, int len, int i, int dim)
{
struct kd_node_t *n;
if (!len) return 0;
if ((n = find_median(t, t + len, i))) {
i = (i + 1) % dim;
n->left = make_tree(t, n - t, i, dim);
n->right = make_tree(n + 1, t + len - (n + 1), i, dim);
}
return n;
}
/* global variable, so sue me */
int visited;
void nearest(struct kd_node_t *root, struct kd_node_t *nd, int i, int dim,
struct kd_node_t **best, double *best_dist)
{
double d, dx, dx2;
if (!root) return;
d = dist(root, nd, dim);
dx = root->x[i] - nd->x[i];
dx2 = dx * dx;
visited ++;
if (!*best || d < *best_dist) {
*best_dist = d;
*best = root;
}
/* if chance of exact match is high */
if (!*best_dist) return;
if (++i >= dim) i = 0;
nearest(dx > 0 ? root->left : root->right, nd, i, dim, best, best_dist);
if (dx2 >= *best_dist) return;
nearest(dx > 0 ? root->right : root->left, nd, i, dim, best, best_dist);
}
#define N 1000000
#define rand1() (rand() / (double)RAND_MAX)
#define rand_pt(v) { v.x[0] = rand1(); v.x[1] = rand1(); v.x[2] = rand1(); }
int main(void)
{
int i;
struct kd_node_t wp[] = {
{{2, 3}}, {{5, 4}}, {{9, 6}}, {{4, 7}}, {{8, 1}}, {{7, 2}}
};
struct kd_node_t this = {{9, 2}};
struct kd_node_t *root, *found, *million;
double best_dist;
root = make_tree(wp, sizeof(wp) / sizeof(wp[1]), 0, 2);
visited = 0;
found = 0;
nearest(root, &this, 0, 2, &found, &best_dist);
printf(">> WP tree\nsearching for (%g, %g)\n"
"found (%g, %g) dist %g\nseen %d nodes\n\n",
this.x[0], this.x[1],
found->x[0], found->x[1], sqrt(best_dist), visited);
million = calloc(N, sizeof(struct kd_node_t));
srand(time(0));
for (i = 0; i < N; i++) rand_pt(million[i]);
root = make_tree(million, N, 0, 3);
rand_pt(this);
visited = 0;
found = 0;
nearest(root, &this, 0, 3, &found, &best_dist);
printf(">> Million tree\nsearching for (%g, %g, %g)\n"
"found (%g, %g, %g) dist %g\nseen %d nodes\n",
this.x[0], this.x[1], this.x[2],
found->x[0], found->x[1], found->x[2],
sqrt(best_dist), visited);
/* search many random points in million tree to see average behavior.
tree size vs avg nodes visited:
10 ~ 7
100 ~ 16.5
1000 ~ 25.5
10000 ~ 32.8
100000 ~ 38.3
1000000 ~ 42.6
10000000 ~ 46.7 */
int sum = 0, test_runs = 100000;
for (i = 0; i < test_runs; i++) {
found = 0;
visited = 0;
rand_pt(this);
nearest(root, &this, 0, 3, &found, &best_dist);
sum += visited;
}
printf("\n>> Million tree\n"
"visited %d nodes for %d random findings (%f per lookup)\n",
sum, test_runs, sum/(double)test_runs);
// free(million);
return 0;
}