我的解决方案取决于一些巧妙计算的数字的数学特性
range = array size
prime = closestPrimeAfter(range)
root = closestPrimitiveRootTo(range/2)
state = root
通过这种设置,我们可以重复计算以下内容,它会以看似随机的顺序对数组的所有元素进行一次迭代,之后它将循环以再次以相同的确切顺序遍历数组。
state = (state * root) % prime
我在 Java 中实现并测试了它,所以我决定将我的代码粘贴在这里以供将来参考。
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Random;
public class PseudoRandomSequence {
private long state;
private final long range;
private final long root;
private final long prime;
//Debugging counter
private int dropped = 0;
public PseudoRandomSequence(int r) {
range = r;
prime = closestPrimeAfter(range);
root = modPow(generator(prime), closestPrimeTo(prime / 2), prime);
reset();
System.out.println("-- r:" + range);
System.out.println(" p:" + prime);
System.out.println(" k:" + root);
System.out.println(" s:" + state);
}
// https://en.wikipedia.org/wiki/Primitive_root_modulo_n
private static long modPow(long base, long exp, long mod) {
return BigInteger.valueOf(base).modPow(BigInteger.valueOf(exp), BigInteger.valueOf(mod)).intValue();
}
//http://e-maxx-eng.github.io/algebra/primitive-root.html
private static long generator(long p) {
ArrayList<Long> fact = new ArrayList<Long>();
long phi = p - 1, n = phi;
for (long i = 2; i * i <= n; ++i) {
if (n % i == 0) {
fact.add(i);
while (n % i == 0) {
n /= i;
}
}
}
if (n > 1) fact.add(n);
for (long res = 2; res <= p; ++res) {
boolean ok = true;
for (long i = 0; i < fact.size() && ok; ++i) {
ok &= modPow(res, phi / fact.get((int) i), p) != 1;
}
if (ok) {
return res;
}
}
return -1;
}
public long get() {
return state - 1;
}
public void advance() {
//This loop simply skips all results that overshoot the range, which should never happen if range is a prime number.
dropped--;
do {
state = (state * root) % prime;
dropped++;
} while (state > range);
}
public void reset() {
state = root;
dropped = 0;
}
private static boolean isPrime(long num) {
if (num == 2) return true;
if (num % 2 == 0) return false;
for (int i = 3; i * i <= num; i += 2) {
if (num % i == 0) return false;
}
return true;
}
private static long closestPrimeAfter(long n) {
long up;
for (up = n + 1; !isPrime(up); ++up)
;
return up;
}
private static long closestPrimeBefore(long n) {
long dn;
for (dn = n - 1; !isPrime(dn); --dn)
;
return dn;
}
private static long closestPrimeTo(long n) {
final long dn = closestPrimeBefore(n);
final long up = closestPrimeAfter(n);
return (n - dn) > (up - n) ? up : dn;
}
private static boolean test(int r, int loops) {
final int array[] = new int[r];
Arrays.fill(array, 0);
System.out.println("TESTING: array size: " + r + ", loops: " + loops + "\n");
PseudoRandomSequence prs = new PseudoRandomSequence(r);
final long ct = loops * r;
//Iterate the array 'loops' times, incrementing the value for each cell for every visit.
for (int i = 0; i < ct; ++i) {
prs.advance();
final long index = prs.get();
array[(int) index]++;
}
//Verify that each cell was visited exactly 'loops' times, confirming the validity of the sequence
for (int i = 0; i < r; ++i) {
final int c = array[i];
if (loops != c) {
System.err.println("ERROR: array element @" + i + " was " + c + " instead of " + loops + " as expected\n");
return false;
}
}
//TODO: Verify the "randomness" of the sequence
System.out.println("OK: Sequence checked out with " + prs.dropped + " drops (" + prs.dropped / loops + " per loop vs. diff " + (prs.prime - r) + ") \n");
return true;
}
//Run lots of random tests
public static void main(String[] args) {
Random r = new Random();
r.setSeed(1337);
for (int i = 0; i < 100; ++i) {
PseudoRandomSequence.test(r.nextInt(1000000) + 1, r.nextInt(9) + 1);
}
}
}
这是受图形宝石卷中描述的 2D 图形“溶解”效果的小型 C 实现的启发。1 这反过来是对 2D 的适应,对称为“LFSR”的机制进行了一些优化(此处为维基百科文章,此处为原始溶解.c 源代码)。