我有一个数据集,每个时间戳由多个元组组成——每个元组都有一个计数。每个时间戳可能存在不同的元组。我想将这些组合在 5 分钟的箱子中,并为每个唯一的元组添加计数。使用 Pandas group-by 有没有一种干净的方法来做到这一点?
它们的形式为: ((u'67.163.47.231', u'8.27.82.254', 50186, 80, 6, 1377565195000), 2)
这目前是一个列表,有一个 6 元组(最后一个条目是时间戳),然后计数。
每个时间戳都会有一个 5 元组的集合:
(5-tuple), t-time-stamp, count, 例如(仅一个时间戳)
[((u'71.57.43.240', u'8.27.82.254', 33108, 80, 6, 1377565195000), 1),
((u'67.163.47.231', u'8.27.82.254', 50186, 80, 6, 1377565195000), 2),
((u'8.27.82.254', u'98.206.29.242', 25159, 80, 6, 1377565195000), 1),
((u'71.179.102.253', u'8.27.82.254', 50958, 80, 6, 1377565195000), 1)]
In [220]: df = DataFrame ( { 'key1' : [ (u'71.57.43.240', u'8.27.82.254', 33108, 80, 6), (u'67.163.47.231', u'8.27.82.254', 50186, 80, 6) ], 'data1' : np.array((1,2)), 'data2': np.array((1377565195000,1377565195000))})
In [226]: df
Out[226]:
data1 data2 key1
0 1 1377565195000 (71.57.43.240, 8.27.82.254, 33108, 80, 6)
1 2 1377565195000 (67.163.47.231, 8.27.82.254, 50186, 80, 6)
或转换:
In [231]: df = DataFrame ( { 'key1' : [ (u'71.57.43.240', u'8.27.82.254', 33108, 80, 6), (u'67.163.47.231', u'8.27.82.254', 50186, 80, 6) ], 'data1' : np.array((1,2)),
.....: 'data2': np.array(( datetime.utcfromtimestamp(1377565195),datetime.utcfromtimestamp(1377565195) )) })
In [232]: df
Out[232]:
data1 data2 key1
0 1 2013-08-27 00:59:55 (71.57.43.240, 8.27.82.254, 33108, 80, 6)
1 2 2013-08-27 00:59:55 (67.163.47.231, 8.27.82.254, 50186, 80, 6)
Here's a simpler example:
time count city
00:00:00 1 Montreal
00:00:00 2 New York
00:00:00 1 Chicago
00:01:00 2 Montreal
00:01:00 3 New York
after bin-ing
time count city
00:05:00 3 Montreal
00:05:00 5 New York
00:05:00 1 Chicago
这似乎运作良好:
times = [ parse('00:00:00'), parse('00:00:00'), parse('00:00:00'), parse('00:01:00'), parse('00:01:00'),
parse('00:02:00'), parse('00:02:00'), parse('00:03:00'), parse('00:04:00'), parse('00:05:00'),
parse('00:05:00'), parse('00:06:00'), parse('00:06:00') ]
cities = [ 'Montreal', 'New York', 'Chicago', 'Montreal', 'New York',
'New York', 'Chicago', 'Montreal', 'Montreal', 'New York', 'Chicago', 'Montreal', 'Chicago']
counts = [ 1, 2, 1, 2, 3, 1, 1, 1, 2, 2, 2, 1, 1]
frame = DataFrame( { 'city': cities, 'time': times, 'count': counts } )
In [150]: frame
Out[150]:
city count time
0 Montreal 1 2013-09-07 00:00:00
1 New York 2 2013-09-07 00:00:00
2 Chicago 1 2013-09-07 00:00:00
3 Montreal 2 2013-09-07 00:01:00
4 New York 3 2013-09-07 00:01:00
5 New York 1 2013-09-07 00:02:00
6 Chicago 1 2013-09-07 00:02:00
7 Montreal 1 2013-09-07 00:03:00
8 Montreal 2 2013-09-07 00:04:00
9 New York 2 2013-09-07 00:05:00
10 Chicago 2 2013-09-07 00:05:00
11 Montreal 1 2013-09-07 00:06:00
12 Chicago 1 2013-09-07 00:06:00
frame['time_5min'] = frame['time'].map(lambda x: pd.DataFrame([0],index=pd.DatetimeIndex([x])).resample('5min').index[0])
In [152]: frame
Out[152]:
city count time time_5min
0 Montreal 1 2013-09-07 00:00:00 2013-09-07 00:00:00
1 New York 2 2013-09-07 00:00:00 2013-09-07 00:00:00
2 Chicago 1 2013-09-07 00:00:00 2013-09-07 00:00:00
3 Montreal 2 2013-09-07 00:01:00 2013-09-07 00:00:00
4 New York 3 2013-09-07 00:01:00 2013-09-07 00:00:00
5 New York 1 2013-09-07 00:02:00 2013-09-07 00:00:00
6 Chicago 1 2013-09-07 00:02:00 2013-09-07 00:00:00
7 Montreal 1 2013-09-07 00:03:00 2013-09-07 00:00:00
8 Montreal 2 2013-09-07 00:04:00 2013-09-07 00:00:00
9 New York 2 2013-09-07 00:05:00 2013-09-07 00:05:00
10 Chicago 2 2013-09-07 00:05:00 2013-09-07 00:05:00
11 Montreal 1 2013-09-07 00:06:00 2013-09-07 00:05:00
12 Chicago 1 2013-09-07 00:06:00 2013-09-07 00:05:00
In [153]: df = frame.groupby(['time_5min', 'city']).aggregate('sum')
In [154]: df
Out[154]:
count
time_5min city
2013-09-07 00:00:00 Chicago 2
Montreal 6
New York 6
2013-09-07 00:05:00 Chicago 3
Montreal 1
New York 2
In [155]: df.reset_index(1)
Out[155]:
city count
time_5min
2013-09-07 00:00:00 Chicago 2
2013-09-07 00:00:00 Montreal 6
2013-09-07 00:00:00 New York 6
2013-09-07 00:05:00 Chicago 3
2013-09-07 00:05:00 Montreal 1
2013-09-07 00:05:00 New York 2