我收到一条错误消息,指出“数组包含 NaN 或无穷大”。我已经检查了我的数据,既训练/测试了缺失值,也没有遗漏任何东西。
我可能对“数组包含 NaN 或无穷大”的含义有错误的解释。
import numpy as np
from sklearn import linear_model
from numpy import genfromtxt, savetxt
def main():
#create the training & test sets, skipping the header row with [1:]
dataset = genfromtxt(open('C:\\Users\\Owner\\training.csv','r'), delimiter=',')[0:50]
target = [x[0] for x in dataset]
train = [x[1:50] for x in dataset]
test = genfromtxt(open('C:\\Users\\Owner\\test.csv','r'), delimiter=',')[0:50]
#create and train the SGD
sgd = linear_model.SGDClassifier()
sgd.fit(train, target)
predictions = [x[1] for x in sgd.predict(test)]
savetxt('C:\\Users\\Owner\\Desktop\\preds.csv', predictions, delimiter=',', fmt='%f')
if __name__=="__main__":
main()
我认为数据类型可能会将算法抛出循环(它们是浮点数)。
我知道 SGD 可以处理浮点数,所以我不确定这个设置是否需要我声明数据类型。
例如以下之一:
>>> dt = np.dtype('i4') # 32-bit signed integer
>>> dt = np.dtype('f8') # 64-bit floating-point number
>>> dt = np.dtype('c16') # 128-bit complex floating-point number
>>> dt = np.dtype('a25') # 25-character string
以下是完整的错误消息:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-62-af5537e7802b> in <module>()
19
20 if __name__=="__main__":
---> 21 main()
<ipython-input-62-af5537e7802b> in main()
13 #create and train the SGD
14 sgd = linear_model.SGDClassifier()
---> 15 sgd.fit(train, target)
16 predictions = [x[1] for x in sgd.predict(test)]
17
C:\Anaconda\lib\site-packages\sklearn\linear_model\stochastic_gradient.pyc in fi
t(self, X, y, coef_init, intercept_init, class_weight, sample_weight)
518 coef_init=coef_init, intercept_init=intercept_i
nit,
519 class_weight=class_weight,
--> 520 sample_weight=sample_weight)
521
522
C:\Anaconda\lib\site-packages\sklearn\linear_model\stochastic_gradient.pyc in _f
it(self, X, y, alpha, C, loss, learning_rate, coef_init, intercept_init, class_w
eight, sample_weight)
397 self.class_weight = class_weight
398
--> 399 X = atleast2d_or_csr(X, dtype=np.float64, order="C")
400 n_samples, n_features = X.shape
401
C:\Anaconda\lib\site-packages\sklearn\utils\validation.pyc in atleast2d_or_csr(X
, dtype, order, copy)
114 """
115 return _atleast2d_or_sparse(X, dtype, order, copy, sparse.csr_matrix
,
--> 116 "tocsr")
117
118
C:\Anaconda\lib\site-packages\sklearn\utils\validation.pyc in _atleast2d_or_spar
se(X, dtype, order, copy, sparse_class, convmethod)
94 _assert_all_finite(X.data)
95 else:
---> 96 X = array2d(X, dtype=dtype, order=order, copy=copy)
97 _assert_all_finite(X)
98 return X
C:\Anaconda\lib\site-packages\sklearn\utils\validation.pyc in array2d(X, dtype,
order, copy)
79 'is required. Use X.toarray() to convert to dens
e.')
80 X_2d = np.asarray(np.atleast_2d(X), dtype=dtype, order=order)
---> 81 _assert_all_finite(X_2d)
82 if X is X_2d and copy:
83 X_2d = safe_copy(X_2d)
C:\Anaconda\lib\site-packages\sklearn\utils\validation.pyc in _assert_all_finite
(X)
16 if (X.dtype.char in np.typecodes['AllFloat'] and not np.isfinite(X.s
um())
17 and not np.isfinite(X).all()):
---> 18 raise ValueError("Array contains NaN or infinity.")
19
20
ValueError: Array contains NaN or infinity.
任何想法将不胜感激。