我有一个相对简单的问题(我认为)。我正在研究一段 Cython 代码,该代码在给定应变和特定方向时计算应变椭圆的半径(即在一定量的应变下平行于给定方向的半径)。在每个程序运行期间,这个函数被调用了几百万次,分析表明这个函数是性能方面的限制因素。这是代码:
# importing math functions from a C-library (faster than numpy)
from libc.math cimport sin, cos, acos, exp, sqrt, fabs, M_PI
cdef class funcs:
cdef inline double get_r(self, double g, double omega):
# amount of strain: g, angle: omega
cdef double l1, l2, A, r, g2, gs # defining some variables
if g == 0: return 1 # no strain means the strain ellipse is a circle
omega = omega*M_PI/180 # converting angle omega to radians
g2 = g*g
gs = g*sqrt(4 + g2)
l1 = 0.5*(2 + g2 + gs) # l1 and l2: eigenvalues of the Cauchy strain tensor
l2 = 0.5*(2 + g2 - gs)
A = acos(g/sqrt(g2 + (1 - l2)**2)) # orientation of the long axis of the ellipse
r = 1./sqrt(sqrt(l2)*(cos(omega - A)**2) + sqrt(l1)*(sin(omega - A)**2)) # the radius parallel to omega
return r # return of the jedi
每次调用运行这段代码大约需要 0.18 微秒,我认为对于这样一个简单的函数来说有点长。另外,math.h
有一个 square(x) 函数,但我不能从libc.math
库中导入它,有人知道怎么做吗?还有什么其他建议可以进一步提高这段代码的性能吗?
更新 2013/09/04:
似乎有更多的东西在起作用而不是看起来。当我分析一个调用get_r
1000 万次的函数时,我得到的性能与调用另一个函数不同。我添加了部分代码的更新版本。当我get_r_profile
用于分析时,每次调用 0.073 微秒get_r
,而每次调用MC_criterion_profile
0.164 微秒get_r
,相差 50%,这似乎与return r
.
from libc.math cimport sin, cos, acos, exp, sqrt, fabs, M_PI
cdef class thesis_funcs:
cdef inline double get_r(self, double g, double omega):
cdef double l1, l2, A, r, g2, gs, cos_oa2, sin_oa2
if g == 0: return 1
omega = omega*SCALEDPI
g2 = g*g
gs = g*sqrt(4 + g2)
l1 = 0.5*(2 + g2 + gs)
l2 = l1 - gs
A = acos(g/sqrt(g2 + square(1 - l2)))
cos_oa2 = square(cos(omega - A))
sin_oa2 = 1 - cos_oa2
r = 1.0/sqrt(sqrt(l2)*cos_oa2 + sqrt(l1)*sin_oa2)
return r
@cython.profile(False)
cdef inline double get_mu(self, double r, double mu0, double mu1):
return mu0*exp(-mu1*(r - 1))
def get_r_profile(self): # Profiling through this guy gives me 0.073 microsec/call
cdef unsigned int i
for i from 0 <= i < 10000000:
self.get_r(3.0, 165)
def MC_criterion(self, double g, double omega, double mu0, double mu1, double C = 0.0):
cdef double r, mu, theta, res
r = self.get_r(g, omega)
mu = self.get_mu(r, mu0, mu1)
theta = 45 - omega
theta = theta*SCALEDPI
res = fabs(g*sin(2.0*theta)) - mu*(1 + g*cos(2.0*theta)) - C
return res
def MC_criterion_profile(self): # Profiling through this one gives 0.164 microsec/call
cdef double g, omega, mu0, mu1
cdef unsigned int i
omega = 165
mu0 = 0.6
mu1 = 2.0
g = 3.0
for i from 1 <= i < 10000000:
self.MC_criterion(g, omega, mu0, mu1)
我认为两者之间可能存在根本差异,get_r_profile
并且MC_criterion
会导致额外的间接费用。你能发现吗?