我想使用 NTT 进行快速平方计算(请参阅 Fast bignum square calculation),但即使对于非常大的数字,结果也很慢......超过 12000 位。
所以我的问题是:
- 有没有办法优化我的 NTT 转换?我并不是要通过并行(线程)来加速它;这只是低级层。
- 有没有办法加快我的模运算?
这是我在 C++ 中为 NTT 编写的(已经优化的)源代码(它是完整的,并且 100% 在 C++ 中工作,不需要第三方库,也应该是线程安全的。当心源数组被用作临时的!!! , 它也不能将数组转换为自身)。
//---------------------------------------------------------------------------
class fourier_NTT // Number theoretic transform
{
public:
DWORD r,L,p,N;
DWORD W,iW,rN;
fourier_NTT(){ r=0; L=0; p=0; W=0; iW=0; rN=0; }
// main interface
void NTT(DWORD *dst,DWORD *src,DWORD n=0); // DWORD dst[n] = fast NTT(DWORD src[n])
void INTT(DWORD *dst,DWORD *src,DWORD n=0); // DWORD dst[n] = fast INTT(DWORD src[n])
// Helper functions
bool init(DWORD n); // init r,L,p,W,iW,rN
void NTT_fast(DWORD *dst,DWORD *src,DWORD n,DWORD w); // DWORD dst[n] = fast NTT(DWORD src[n])
// Only for testing
void NTT_slow(DWORD *dst,DWORD *src,DWORD n,DWORD w); // DWORD dst[n] = slow NTT(DWORD src[n])
void INTT_slow(DWORD *dst,DWORD *src,DWORD n,DWORD w); // DWORD dst[n] = slow INTT(DWORD src[n])
// DWORD arithmetics
DWORD shl(DWORD a);
DWORD shr(DWORD a);
// Modular arithmetics
DWORD mod(DWORD a);
DWORD modadd(DWORD a,DWORD b);
DWORD modsub(DWORD a,DWORD b);
DWORD modmul(DWORD a,DWORD b);
DWORD modpow(DWORD a,DWORD b);
};
//---------------------------------------------------------------------------
void fourier_NTT:: NTT(DWORD *dst,DWORD *src,DWORD n)
{
if (n>0) init(n);
NTT_fast(dst,src,N,W);
// NTT_slow(dst,src,N,W);
}
//---------------------------------------------------------------------------
void fourier_NTT::INTT(DWORD *dst,DWORD *src,DWORD n)
{
if (n>0) init(n);
NTT_fast(dst,src,N,iW);
for (DWORD i=0;i<N;i++) dst[i]=modmul(dst[i],rN);
// INTT_slow(dst,src,N,W);
}
//---------------------------------------------------------------------------
bool fourier_NTT::init(DWORD n)
{
// (max(src[])^2)*n < p else NTT overflow can ocur !!!
r=2; p=0xC0000001; if ((n<2)||(n>0x10000000)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x30000000/n; // 32:30 bit best for unsigned 32 bit
// r=2; p=0x78000001; if ((n<2)||(n>0x04000000)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x3c000000/n; // 31:27 bit best for signed 32 bit
// r=2; p=0x00010001; if ((n<2)||(n>0x00000020)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x00000020/n; // 17:16 bit best for 16 bit
// r=2; p=0x0a000001; if ((n<2)||(n>0x01000000)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x01000000/n; // 28:25 bit
N=n; // size of vectors [DWORDs]
W=modpow(r, L); // Wn for NTT
iW=modpow(r,p-1-L); // Wn for INTT
rN=modpow(n,p-2 ); // scale for INTT
return true;
}
//---------------------------------------------------------------------------
void fourier_NTT:: NTT_fast(DWORD *dst,DWORD *src,DWORD n,DWORD w)
{
if (n<=1) { if (n==1) dst[0]=src[0]; return; }
DWORD i,j,a0,a1,n2=n>>1,w2=modmul(w,w);
// reorder even,odd
for (i=0,j=0;i<n2;i++,j+=2) dst[i]=src[j];
for ( j=1;i<n ;i++,j+=2) dst[i]=src[j];
// recursion
NTT_fast(src ,dst ,n2,w2); // even
NTT_fast(src+n2,dst+n2,n2,w2); // odd
// restore results
for (w2=1,i=0,j=n2;i<n2;i++,j++,w2=modmul(w2,w))
{
a0=src[i];
a1=modmul(src[j],w2);
dst[i]=modadd(a0,a1);
dst[j]=modsub(a0,a1);
}
}
//---------------------------------------------------------------------------
void fourier_NTT:: NTT_slow(DWORD *dst,DWORD *src,DWORD n,DWORD w)
{
DWORD i,j,wj,wi,a,n2=n>>1;
for (wj=1,j=0;j<n;j++)
{
a=0;
for (wi=1,i=0;i<n;i++)
{
a=modadd(a,modmul(wi,src[i]));
wi=modmul(wi,wj);
}
dst[j]=a;
wj=modmul(wj,w);
}
}
//---------------------------------------------------------------------------
void fourier_NTT::INTT_slow(DWORD *dst,DWORD *src,DWORD n,DWORD w)
{
DWORD i,j,wi=1,wj=1,a,n2=n>>1;
for (wj=1,j=0;j<n;j++)
{
a=0;
for (wi=1,i=0;i<n;i++)
{
a=modadd(a,modmul(wi,src[i]));
wi=modmul(wi,wj);
}
dst[j]=modmul(a,rN);
wj=modmul(wj,iW);
}
}
//---------------------------------------------------------------------------
DWORD fourier_NTT::shl(DWORD a) { return (a<<1)&0xFFFFFFFE; }
DWORD fourier_NTT::shr(DWORD a) { return (a>>1)&0x7FFFFFFF; }
//---------------------------------------------------------------------------
DWORD fourier_NTT::mod(DWORD a)
{
DWORD bb;
for (bb=p;(DWORD(a)>DWORD(bb))&&(!DWORD(bb&0x80000000));bb=shl(bb));
for (;;)
{
if (DWORD(a)>=DWORD(bb)) a-=bb;
if (bb==p) break;
bb =shr(bb);
}
return a;
}
//---------------------------------------------------------------------------
DWORD fourier_NTT::modadd(DWORD a,DWORD b)
{
DWORD d,cy;
a=mod(a);
b=mod(b);
d=a+b;
cy=(shr(a)+shr(b)+shr((a&1)+(b&1)))&0x80000000;
if (cy) d-=p;
if (DWORD(d)>=DWORD(p)) d-=p;
return d;
}
//---------------------------------------------------------------------------
DWORD fourier_NTT::modsub(DWORD a,DWORD b)
{
DWORD d;
a=mod(a);
b=mod(b);
d=a-b; if (DWORD(a)<DWORD(b)) d+=p;
if (DWORD(d)>=DWORD(p)) d-=p;
return d;
}
//---------------------------------------------------------------------------
DWORD fourier_NTT::modmul(DWORD a,DWORD b)
{ // b bez orezania !
int i;
DWORD d;
a=mod(a);
for (d=0,i=0;i<32;i++)
{
if (DWORD(a&1)) d=modadd(d,b);
a=shr(a);
b=modadd(b,b);
}
return d;
}
//---------------------------------------------------------------------------
DWORD fourier_NTT::modpow(DWORD a,DWORD b)
{ // a,b bez orezania !
int i;
DWORD d=1;
for (i=0;i<32;i++)
{
d=modmul(d,d);
if (DWORD(b&0x80000000)) d=modmul(d,a);
b=shl(b);
}
return d;
}
//---------------------------------------------------------------------------
我的 NTT 类的使用示例:
fourier_NTT ntt;
const DWORD n=32
DWORD x[N]={0,1,2,3,....31},y[N]={32,33,34,35,...63},z[N];
ntt.NTT(z,x,N); // z[N]=NTT(x[N]), also init constants for N
ntt.NTT(x,y); // x[N]=NTT(y[N]), no recompute of constants, use last N
// modular convolution y[]=z[].x[]
for (i=0;i<n;i++) y[i]=ntt.modmul(z[i],x[i]);
ntt.INTT(x,y); // x[N]=INTT(y[N]), no recompute of constants, use last N
// x[]=convolution of original x[].y[]
优化前的一些测量(非 NTT 类):
a = 0.98765588997654321000 | 389*32 bits
looped 1x times
sqr1[ 3.177 ms ] fast sqr
sqr2[ 720.419 ms ] NTT sqr
mul1[ 5.588 ms ] simpe mul
mul2[ 3.172 ms ] karatsuba mul
mul3[ 1053.382 ms ] NTT mul
我优化后的一些测量(当前代码、更低的递归参数大小/计数和更好的模块化算法):
a = 0.98765588997654321000 | 389*32 bits
looped 1x times
sqr1[ 3.214 ms ] fast sqr
sqr2[ 208.298 ms ] NTT sqr
mul1[ 5.564 ms ] simpe mul
mul2[ 3.113 ms ] karatsuba mul
mul3[ 302.740 ms ] NTT mul
检查 NTT mul 和 NTT sqr 时间(我的优化将其加快了 3 倍多一点)。它只有 1 倍循环,所以它不是很精确(误差 ~ 10%),但即使现在加速也很明显(通常我循环它 1000 倍甚至更多,但我的 NTT 太慢了)。
您可以自由使用我的代码...只需将我的昵称和/或指向此页面的链接保留在某处(代码中的 rem、readme.txt、about 或其他)。我希望它有所帮助......(我在任何地方都没有看到快速 NTT 的 C++ 源代码,所以我不得不自己编写)。对所有接受的 N 进行了统一根测试,请参见fourier_NTT::init(DWORD n)
函数。
PS:有关 NTT 的更多信息,请参阅Translation from Complex-FFT to Finite-Field-FFT。此代码基于我在该链接中的帖子。
[edit1:] 代码中的进一步更改
通过利用模素数始终为 0xC0000001 并消除不必要的调用,我设法进一步优化了我的模运算。现在产生的加速效果令人惊叹(超过 40 倍),并且在大约 1500 * 32 位阈值之后,NTT 乘法比 karatsuba 更快。顺便说一句,我的 NTT 的速度现在与我在 64 位双精度上优化的 DFFT 相同。
一些测量:
a = 0.98765588997654321000 | 1553*32bits
looped 10x times
mul2[ 28.585 ms ] karatsuba mul
mul3[ 26.311 ms ] NTT mul
模运算的新源代码:
//---------------------------------------------------------------------------
DWORD fourier_NTT::mod(DWORD a)
{
if (a>p) a-=p;
return a;
}
//---------------------------------------------------------------------------
DWORD fourier_NTT::modadd(DWORD a,DWORD b)
{
DWORD d,cy;
if (a>p) a-=p;
if (b>p) b-=p;
d=a+b;
cy=((a>>1)+(b>>1)+(((a&1)+(b&1))>>1))&0x80000000;
if (cy ) d-=p;
if (d>p) d-=p;
return d;
}
//---------------------------------------------------------------------------
DWORD fourier_NTT::modsub(DWORD a,DWORD b)
{
DWORD d;
if (a>p) a-=p;
if (b>p) b-=p;
d=a-b;
if (a<b) d+=p;
if (d>p) d-=p;
return d;
}
//---------------------------------------------------------------------------
DWORD fourier_NTT::modmul(DWORD a,DWORD b)
{
DWORD _a,_b,_p;
_a=a;
_b=b;
_p=p;
asm {
mov eax,_a
mov ebx,_b
mul ebx // H(edx),L(eax) = eax * ebx
mov ebx,_p
div ebx // eax = H(edx),L(eax) / ebx
mov _a,edx // edx = H(edx),L(eax) % ebx
}
return _a;
}
//---------------------------------------------------------------------------
DWORD fourier_NTT::modpow(DWORD a,DWORD b)
{ // b bez orezania!
int i;
DWORD d=1;
if (a>p) a-=p;
for (i=0;i<32;i++)
{
d=modmul(d,d);
if (DWORD(b&0x80000000)) d=modmul(d,a);
b<<=1;
}
return d;
}
//---------------------------------------------------------------------------
如您所见,函数shl
并shr
不再使用。我认为 modpow 可以进一步优化,但它不是一个关键函数,因为它只被调用很少。最关键的功能是 modmul,它似乎处于最佳状态。
进一步的问题:
- 有没有其他加速 NTT 的选项?
- 我对模运算的优化是否安全?(结果似乎是一样的,但我可能会错过一些东西。)
[edit2] 新的优化
a = 0.99991970486 | 2000*32 bits
looped 10x
sqr1[ 13.908 ms ] fast sqr
sqr2[ 13.649 ms ] NTT sqr
mul1[ 19.726 ms ] simpe mul
mul2[ 31.808 ms ] karatsuba mul
mul3[ 19.373 ms ] NTT mul
我从您的所有评论中实现了所有可用的东西(感谢您的洞察力)。
加速:
- +2.5% 移除不必要的安全模组(Mandalf The Beige)
- +34.9% 使用预先计算的 W,iW 力量(神秘)
- +35% 总计
实际完整源代码:
//---------------------------------------------------------------------------
//--- Number theoretic transforms: 2.03 -------------------------------------
//---------------------------------------------------------------------------
#ifndef _fourier_NTT_h
#define _fourier_NTT_h
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
class fourier_NTT // Number theoretic transform
{
public:
DWORD r,L,p,N;
DWORD W,iW,rN; // W=(r^L) mod p, iW=inverse W, rN = inverse N
DWORD *WW,*iWW,NN; // Precomputed (W,iW)^(0,..,NN-1) powers
// Internals
fourier_NTT(){ r=0; L=0; p=0; W=0; iW=0; rN=0; WW=NULL; iWW=NULL; NN=0; }
~fourier_NTT(){ _free(); }
void _free(); // Free precomputed W,iW powers tables
void _alloc(DWORD n); // Allocate and precompute W,iW powers tables
// Main interface
void NTT(DWORD *dst,DWORD *src,DWORD n=0); // DWORD dst[n] = fast NTT(DWORD src[n])
void iNTT(DWORD *dst,DWORD *src,DWORD n=0); // DWORD dst[n] = fast INTT(DWORD src[n])
// Helper functions
bool init(DWORD n); // init r,L,p,W,iW,rN
void NTT_fast(DWORD *dst,DWORD *src,DWORD n,DWORD w); // DWORD dst[n] = fast NTT(DWORD src[n])
void NTT_fast(DWORD *dst,DWORD *src,DWORD n,DWORD *w2,DWORD i2);
// Only for testing
void NTT_slow(DWORD *dst,DWORD *src,DWORD n,DWORD w); // DWORD dst[n] = slow NTT(DWORD src[n])
void iNTT_slow(DWORD *dst,DWORD *src,DWORD n,DWORD w); // DWORD dst[n] = slow INTT(DWORD src[n])
// Modular arithmetics (optimized, but it works only for p >= 0x80000000!!!)
DWORD mod(DWORD a);
DWORD modadd(DWORD a,DWORD b);
DWORD modsub(DWORD a,DWORD b);
DWORD modmul(DWORD a,DWORD b);
DWORD modpow(DWORD a,DWORD b);
};
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
void fourier_NTT::_free()
{
NN=0;
if ( WW) delete[] WW; WW=NULL;
if (iWW) delete[] iWW; iWW=NULL;
}
//---------------------------------------------------------------------------
void fourier_NTT::_alloc(DWORD n)
{
if (n<=NN) return;
DWORD *tmp,i,w;
tmp=new DWORD[n]; if ((NN)&&( WW)) for (i=0;i<NN;i++) tmp[i]= WW[i]; if ( WW) delete[] WW; WW=tmp; WW[0]=1; for (i=NN?NN:1,w= WW[i-1];i<n;i++){ w=modmul(w, W); WW[i]=w; }
tmp=new DWORD[n]; if ((NN)&&(iWW)) for (i=0;i<NN;i++) tmp[i]=iWW[i]; if (iWW) delete[] iWW; iWW=tmp; iWW[0]=1; for (i=NN?NN:1,w=iWW[i-1];i<n;i++){ w=modmul(w,iW); iWW[i]=w; }
NN=n;
}
//---------------------------------------------------------------------------
void fourier_NTT:: NTT(DWORD *dst,DWORD *src,DWORD n)
{
if (n>0) init(n);
NTT_fast(dst,src,N,WW,1);
// NTT_fast(dst,src,N,W);
// NTT_slow(dst,src,N,W);
}
//---------------------------------------------------------------------------
void fourier_NTT::iNTT(DWORD *dst,DWORD *src,DWORD n)
{
if (n>0) init(n);
NTT_fast(dst,src,N,iWW,1);
// NTT_fast(dst,src,N,iW);
for (DWORD i=0;i<N;i++) dst[i]=modmul(dst[i],rN);
// iNTT_slow(dst,src,N,W);
}
//---------------------------------------------------------------------------
bool fourier_NTT::init(DWORD n)
{
// (max(src[])^2)*n < p else NTT overflow can ocur!!!
r=2; p=0xC0000001; if ((n<2)||(n>0x10000000)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x30000000/n; // 32:30 bit best for unsigned 32 bit
// r=2; p=0x78000001; if ((n<2)||(n>0x04000000)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x3c000000/n; // 31:27 bit best for signed 32 bit
// r=2; p=0x00010001; if ((n<2)||(n>0x00000020)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x00000020/n; // 17:16 bit best for 16 bit
// r=2; p=0x0a000001; if ((n<2)||(n>0x01000000)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x01000000/n; // 28:25 bit
N=n; // Size of vectors [DWORDs]
W=modpow(r, L); // Wn for NTT
iW=modpow(r,p-1-L); // Wn for INTT
rN=modpow(n,p-2 ); // Scale for INTT
_alloc(n>>1); // Precompute W,iW powers
return true;
}
//---------------------------------------------------------------------------
void fourier_NTT:: NTT_fast(DWORD *dst,DWORD *src,DWORD n,DWORD w)
{
if (n<=1) { if (n==1) dst[0]=src[0]; return; }
DWORD i,j,a0,a1,n2=n>>1,w2=modmul(w,w);
// Reorder even,odd
for (i=0,j=0;i<n2;i++,j+=2) dst[i]=src[j];
for ( j=1;i<n ;i++,j+=2) dst[i]=src[j];
// Recursion
NTT_fast(src ,dst ,n2,w2); // Even
NTT_fast(src+n2,dst+n2,n2,w2); // Odd
// Restore results
for (w2=1,i=0,j=n2;i<n2;i++,j++,w2=modmul(w2,w))
{
a0=src[i];
a1=modmul(src[j],w2);
dst[i]=modadd(a0,a1);
dst[j]=modsub(a0,a1);
}
}
//---------------------------------------------------------------------------
void fourier_NTT:: NTT_fast(DWORD *dst,DWORD *src,DWORD n,DWORD *w2,DWORD i2)
{
if (n<=1) { if (n==1) dst[0]=src[0]; return; }
DWORD i,j,a0,a1,n2=n>>1;
// Reorder even,odd
for (i=0,j=0;i<n2;i++,j+=2) dst[i]=src[j];
for ( j=1;i<n ;i++,j+=2) dst[i]=src[j];
// Recursion
i=i2<<1;
NTT_fast(src ,dst ,n2,w2,i); // Even
NTT_fast(src+n2,dst+n2,n2,w2,i); // Odd
// Restore results
for (i=0,j=n2;i<n2;i++,j++,w2+=i2)
{
a0=src[i];
a1=modmul(src[j],*w2);
dst[i]=modadd(a0,a1);
dst[j]=modsub(a0,a1);
}
}
//---------------------------------------------------------------------------
void fourier_NTT:: NTT_slow(DWORD *dst,DWORD *src,DWORD n,DWORD w)
{
DWORD i,j,wj,wi,a;
for (wj=1,j=0;j<n;j++)
{
a=0;
for (wi=1,i=0;i<n;i++)
{
a=modadd(a,modmul(wi,src[i]));
wi=modmul(wi,wj);
}
dst[j]=a;
wj=modmul(wj,w);
}
}
//---------------------------------------------------------------------------
void fourier_NTT::iNTT_slow(DWORD *dst,DWORD *src,DWORD n,DWORD w)
{
DWORD i,j,wi=1,wj=1,a;
for (wj=1,j=0;j<n;j++)
{
a=0;
for (wi=1,i=0;i<n;i++)
{
a=modadd(a,modmul(wi,src[i]));
wi=modmul(wi,wj);
}
dst[j]=modmul(a,rN);
wj=modmul(wj,iW);
}
}
//---------------------------------------------------------------------------
DWORD fourier_NTT::mod(DWORD a)
{
if (a>p) a-=p;
return a;
}
//---------------------------------------------------------------------------
DWORD fourier_NTT::modadd(DWORD a,DWORD b)
{
DWORD d,cy;
//if (a>p) a-=p;
//if (b>p) b-=p;
d=a+b;
cy=((a>>1)+(b>>1)+(((a&1)+(b&1))>>1))&0x80000000;
if (cy ) d-=p;
if (d>p) d-=p;
return d;
}
//---------------------------------------------------------------------------
DWORD fourier_NTT::modsub(DWORD a,DWORD b)
{
DWORD d;
//if (a>p) a-=p;
//if (b>p) b-=p;
d=a-b;
if (a<b) d+=p;
if (d>p) d-=p;
return d;
}
//---------------------------------------------------------------------------
DWORD fourier_NTT::modmul(DWORD a,DWORD b)
{
DWORD _a,_b,_p;
_a=a;
_b=b;
_p=p;
asm {
mov eax,_a
mov ebx,_b
mul ebx // H(edx),L(eax) = eax * ebx
mov ebx,_p
div ebx // eax = H(edx),L(eax) / ebx
mov _a,edx // edx = H(edx),L(eax) % ebx
}
return _a;
}
//---------------------------------------------------------------------------
DWORD fourier_NTT::modpow(DWORD a,DWORD b)
{ // b is not mod(p)!
int i;
DWORD d=1;
//if (a>p) a-=p;
for (i=0;i<32;i++)
{
d=modmul(d,d);
if (DWORD(b&0x80000000)) d=modmul(d,a);
b<<=1;
}
return d;
}
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
#endif
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
NTT_fast
通过分离为两个函数,仍然有可能使用更少的堆垃圾。一个 withWW[]
和另一个 with iWW[]
which 导致递归调用中的一个参数减少。但我对它的期望并不高(仅限 32 位指针),而是有一个功能可以在将来更好地管理代码。许多功能现在处于休眠状态(用于测试),例如慢速变体mod
和较旧的快速功能(使用w
参数而不是*w2,i2
)。
为避免大数据集溢出,请将输入数字限制为p/4
位。每个NTT元素p
的位数在哪里,因此对于这个 32 位版本,使用最大输入值。(32 bit/4 -> 8 bit)
[edit3]bigint
用于测试的简单字符串乘法
//---------------------------------------------------------------------------
char* mul_NTT(const char *sx,const char *sy)
{
char *s;
int i,j,k,n;
// n = min power of 2 <= 2 max length(x,y)
for (i=0;sx[i];i++); for (n=1;n<i;n<<=1); i--;
for (j=0;sx[j];j++); for (n=1;n<j;n<<=1); n<<=1; j--;
DWORD *x,*y,*xx,*yy,a;
x=new DWORD[n]; xx=new DWORD[n];
y=new DWORD[n]; yy=new DWORD[n];
// Zero padding
for (k=0;i>=0;i--,k++) x[k]=sx[i]-'0'; for (;k<n;k++) x[k]=0;
for (k=0;j>=0;j--,k++) y[k]=sy[j]-'0'; for (;k<n;k++) y[k]=0;
//NTT
fourier_NTT ntt;
ntt.NTT(xx,x,n);
ntt.NTT(yy,y);
// Convolution
for (i=0;i<n;i++) xx[i]=ntt.modmul(xx[i],yy[i]);
//INTT
ntt.iNTT(yy,xx);
//suma
a=0; s=new char[n+1]; for (i=0;i<n;i++) { a+=yy[i]; s[n-i-1]=(a%10)+'0'; a/=10; } s[n]=0;
delete[] x; delete[] xx;
delete[] y; delete[] yy;
return s;
}
//---------------------------------------------------------------------------
我使用AnsiString
's,所以我char*
希望将它移植到,我没有做错什么。看起来它工作正常(与AnsiString
版本相比)。
sx,sy
是十进制整数- 返回分配的字符串
(char*)=sx*sy
每个 32 位数据字只有约 4 位,因此没有溢出风险,但它当然更慢。在我的bignum
库中,我使用二进制表示并为NTT8 bit
使用每个 32 位 WORD 的块。如果大的话,更多的是有风险的......N
玩得开心