我希望在 [100,100] 处绘制标记“x”,然后在 [20%, 30%] 处绘制“o”(不同的轴,相同的图)并将它们用一条线连接起来。我可以在相同的轴(使用相同的单位)上做类似的事情,一次调用绘制线,另一次调用绘制“x”,最后调用绘制“o”。
ax.plot(x,y,"-")
ax.scatter(x[0], y[0], marker='x')
ax.scatter(x[1], y[1], marker='o')
但是,我怎样才能让线从一组轴到另一组?
我希望在 [100,100] 处绘制标记“x”,然后在 [20%, 30%] 处绘制“o”(不同的轴,相同的图)并将它们用一条线连接起来。我可以在相同的轴(使用相同的单位)上做类似的事情,一次调用绘制线,另一次调用绘制“x”,最后调用绘制“o”。
ax.plot(x,y,"-")
ax.scatter(x[0], y[0], marker='x')
ax.scatter(x[1], y[1], marker='o')
但是,我怎样才能让线从一组轴到另一组?
您可以使用annotate
绘制单线:
ax1 = plt.subplot(121)
ax2 = plt.subplot(122)
x = [[1, 2], [3,4]]
y = [[5, 6], [6,4]]
ax1.scatter(x[0], y[0])
ax2.scatter(x[1], y[1])
ax1.annotate('', xy=(x[0][0], y[0][0]), xytext=(x[1][0], y[1][0]), xycoords=ax1.transData,
textcoords=ax2.transData,
arrowprops=dict(facecolor='black', arrowstyle='-',, clip_on=False))
ax2.annotate('', xy=(x[0][0], y[0][0]), xytext=(x[1][0], y[1][0]), xycoords=ax1.transData,
textcoords=ax2.transData,
arrowprops=dict(facecolor='black', arrowstyle='-'))
产生这个结果:
我不确定我是否完全理解了你的问题,但是把它放在一起看看它是否是你想要的?
import pylab
#generate array of data for example
import numpy as np
x = np.arange(1,250,1)
y = np.arange(1,250,1)
#find marker for your 'x' points
x_marker_location = 100
x_marker_x = x[np.where(x==x_marker_location)] # np.where looks for location in your data where array equals a value. Alternatively, x_marker_x and y would just be a coordinate value.
x_marker_y = y[np.where(y==x_marker_location)]
#create scaling factors
o_marker_scale_x = 0.2
o_marker_scale_y = 0.3
#find marker for your 'o' points
o_marker_x = x[np.where(x==x_marker_location*o_marker_scale_x)]
o_marker_y = y[np.where(y==x_marker_location*o_marker_scale_y)]
#draw line of all data
pylab.plot(x,y,"-",color='black')
#draw points interested in
pylab.scatter(x_marker_x, x_marker_y, marker='x')
pylab.scatter(o_marker_x, o_marker_y, marker='o')
#draw connecting line - answer to question?
pylab.plot([x_marker_x,o_marker_x],[x_marker_y,o_marker_y],'-',color='red')
#show plot
pylab.show()
对于任何想要在一个图形上绘制高维数据的人,通过绘制连接不同维度的点的线,请注意,您正在寻找的东西称为“平行坐标图”。
matplotlib 中有可能的解决方案,以及使用 pandas 和 plotly 的解决方案: