17

我有基本上随机间隔的数据采样。我想使用 numpy (或其他 python 包)计算加权移动平均值。我有一个移动平均线的粗略实现,但是我很难找到一个很好的方法来做一个加权移动平均线,所以朝向 bin 中心的值的权重大于朝向边缘的值。

在这里,我生成一些样本数据,然后取一个移动平均值。我怎样才能最容易地实现加权移动平均线?谢谢!

import numpy as np
import matplotlib.pyplot as plt

#first generate some datapoint for a randomly sampled noisy sinewave
x = np.random.random(1000)*10
noise = np.random.normal(scale=0.3,size=len(x))
y = np.sin(x) + noise

#plot the data
plt.plot(x,y,'ro',alpha=0.3,ms=4,label='data')
plt.xlabel('Time')
plt.ylabel('Intensity')

#define a moving average function
def moving_average(x,y,step_size=.1,bin_size=1):
    bin_centers  = np.arange(np.min(x),np.max(x)-0.5*step_size,step_size)+0.5*step_size
    bin_avg = np.zeros(len(bin_centers))

    for index in range(0,len(bin_centers)):
        bin_center = bin_centers[index]
        items_in_bin = y[(x>(bin_center-bin_size*0.5) ) & (x<(bin_center+bin_size*0.5))]
        bin_avg[index] = np.mean(items_in_bin)

    return bin_centers,bin_avg

#plot the moving average
bins, average = moving_average(x,y)
plt.plot(bins, average,label='moving average')

plt.show()

输出: 数据和移动平均线

使用 crs17 的建议在 np.average 函数中使用“weights=”,我提出了加权平均函数,它使用高斯函数对数据进行加权:

def weighted_moving_average(x,y,step_size=0.05,width=1):
    bin_centers  = np.arange(np.min(x),np.max(x)-0.5*step_size,step_size)+0.5*step_size
    bin_avg = np.zeros(len(bin_centers))

    #We're going to weight with a Gaussian function
    def gaussian(x,amp=1,mean=0,sigma=1):
        return amp*np.exp(-(x-mean)**2/(2*sigma**2))

    for index in range(0,len(bin_centers)):
        bin_center = bin_centers[index]
        weights = gaussian(x,mean=bin_center,sigma=width)
        bin_avg[index] = np.average(y,weights=weights)

    return (bin_centers,bin_avg)

结果看起来不错: 使用 numpy 的工作加权平均值

4

2 回答 2

7

您可以使用numpy.average来指定权重:

>>> bin_avg[index] = np.average(items_in_bin, weights=my_weights)

因此,要计算权重,您可以找到 bin 中每个数据点的 x 坐标并计算它们到 bin 中心的距离。

于 2013-08-29T18:34:05.410 回答
4

这不会给出一个精确的解决方案,但它会让你的生活更轻松,而且可能已经足够好了……首先,将你的样本平均放在小箱子里。将数据重新采样为等间距后,您可以使用步幅技巧并np.average进行加权平均:

from numpy.lib.stride_tricks import as_strided

def moving_weighted_average(x, y, step_size=.1, steps_per_bin=10,
                            weights=None):
    # This ensures that all samples are within a bin
    number_of_bins = int(np.ceil(np.ptp(x) / step_size))
    bins = np.linspace(np.min(x), np.min(x) + step_size*number_of_bins,
                       num=number_of_bins+1)
    bins -= (bins[-1] - np.max(x)) / 2
    bin_centers = bins[:-steps_per_bin] + step_size*steps_per_bin/2

    counts, _ = np.histogram(x, bins=bins)
    vals, _ = np.histogram(x, bins=bins, weights=y)
    bin_avgs = vals / counts
    n = len(bin_avgs)
    windowed_bin_avgs = as_strided(bin_avgs,
                                   (n-steps_per_bin+1, steps_per_bin),
                                   bin_avgs.strides*2)

    weighted_average = np.average(windowed_bin_avgs, axis=1, weights=weights)

    return bin_centers, weighted_average

您现在可以执行以下操作:

#plot the moving average with triangular weights
weights = np.concatenate((np.arange(0, 5), np.arange(0, 5)[::-1]))
bins, average = moving_weighted_average(x, y, steps_per_bin=len(weights),
                                        weights=weights)
plt.plot(bins, average,label='moving average')

plt.show()

在此处输入图像描述

于 2013-08-29T18:51:15.540 回答