First, note that your code (and some of the previous solutions) will never pop the last element off the list. You want
if (*head != NULL) ...
Next, passing a pointer to a pointer will work. But it's actually better to make a list header like this:
typedef struct node_s {
struct node_s *next;
... data declaration here
} Node;
typedef struct list_s {
struct node_s *head;
} List;
void init_list(List *list) {
list->head = NULL;
}
Now declare a list like this:
List list[1];
init_list(list);
Declaring an array of one element makes every reference to list
a pointer automatically, which eliminates lots of &
's in your code. Then it's nice and clean to implement push and pop:
void push(List *list, Node *node) {
node->next = list->head;
list->head = node;
}
Node *pop(List *list) {
Node *head = list->head;
if (head) {
list->head = head->next;
head->next = NULL;
}
return head;
}
Why is this better? Say you decide later to keep a count of items in the list. With the separate header node this is very easy:
typedef struct list_s {
struct node_s *head;
int length;
} List;
void init_list(List *list) {
list->head = NULL;
length = 0;
}
void push(List *list, Node *node) {
node->next = list->head;
list->head = node;
++list->length;
}
Node *pop(List *list) {
Node *head = list->head;
if (head) {
list->head = head->next;
head->next = NULL;
--list->length;
}
return head;
}
Note no calling code needs to change. With the pointer to pointer approach you are at a dead end. There are many other use cases where having a separate list header makes your code more flexible for future changes.