0

我写了一个算法来研究棒状渗透(即:相交的线段之间的网络)。在我的算法中,在边“b”和“h”的矩形框中创建了 N 个棒(线段),然后,算法一一探索所有线段之间的交点。这是一个蒙特卡洛模拟,所以“实验”被执行了很多次(不少于 100 次)。像这样写,非常消耗RAM:

array_x1=uniform.rvs(loc=-b/2, scale=b, size=N)  
array_y1=uniform.rvs(loc=-h/2, scale=h, size=N)
array_x2=uniform.rvs(loc=-b/2, scale=b, size=N)  
array_y2=uniform.rvs(loc=-h/2, scale=h, size=N)  

M = np.zeros([N,N])  

for u in xrange(100):  ----> This '100' is the number of experiments.
    for j in xrange(N):
       if j>0:
         x_A1B1 = array_x2[j]-array_x1[j]
        y_A1B1 = array_y2[j]-array_y1[j]
        x_A1A2 = array_x1[0:j]-array_x1[j]
        y_A1A2 = array_y1[0:j]-array_y1[j]      
        x_A2A1 = -1*x_A1A2
        y_A2A1 = -1*y_A1A2
        x_A2B2 = array_x2[0:j]-array_x1[0:j]
        y_A2B2 = array_y2[0:j]-array_y1[0:j]
        x_A1B2 = array_x2[0:j]-array_x1[j]
        y_A1B2 = array_y2[0:j]-array_y1[j]
        x_A2B1 = array_x2[j]-array_x1[0:j]
        y_A2B1 = array_y2[j]-array_y1[0:j]

        p1 = x_A1B1*y_A1A2 - y_A1B1*x_A1A2
        p2 = x_A1B1*y_A1B2 - y_A1B1*x_A1B2
        p3 = x_A2B2*y_A2B1 - y_A2B2*x_A2B1
        p4 = x_A2B2*y_A2A1 - y_A2B2*x_A2A1

        condition_1=p1*p2
        condition_2=p3*p4                         

        for k in xrange (j):
            if condicion_1[k]<=0 and condicion_2[k]<=0:
                M[j,k]=1

    if j+1<N+4:
        x_A1B1 = array_x2[j]-array_x1[j]
        y_A1B1 = array_y2[j]-array_y1[j]
        x_A1A2 = array_x1[j+1:]-array_x1[j]
        y_A1A2 = array_y1[j+1:]-array_y1[j]     
        x_A2A1 = -1*x_A1A2
        y_A2A1 = -1*y_A1A2
        x_A2B2 = array_x2[j+1:]-array_x1[j+1:]
        y_A2B2 = array_y2[j+1:]-array_y1[j+1:]
        x_A1B2 = array_x2[j+1:]-array_x1[j]
        y_A1B2 = array_y2[j+1:]-array_y1[j]
        x_A2B1 = array_x2[j]-array_x1[j+1:]
        y_A2B1 = array_y2[j]-array_y1[j+1:]

        p1 = x_A1B1*y_A1A2 - y_A1B1*x_A1A2
        p2 = x_A1B1*y_A1B2 - y_A1B1*x_A1B2
        p3 = x_A2B2*y_A2B1 - y_A2B2*x_A2B1
        p4 = x_A2B2*y_A2A1 - y_A2B2*x_A2A1

        condicion_1=p1*p2
        condicion_2=p3*p4                         

        for k in xrange (N-j-1):
            if condicion_1[k]<=0 and condicion_2[k]<=0:
                M[j,k+j+1]=1

这里,如果棒 i 与棒 j 相交,则元素 Mij = 1,如果不相交,则 Mij = 0。

如何优化我的算法?图论在这种情况下有用吗?如何?

等待您的答复。

非常感谢!

此致

4

0 回答 0