3

我有一个带有股票列表的python dict。我试图在 for 循环中使用键(股票代码,见下文)迭代地为所有通过 pandas DataReader 填充价格/交易量的股票(以股票代码命名)生成多个 pandas DataFrame。我想我在下面的代码中有一个基本的 python 问题,因为创建的唯一 DataFrame 是“stockName”。谢谢你的帮助

print stocks.keys()
['TSO', 'WDC', 'EBIX', 'AAPL', 'GTAT', 'MSFT', 'BKE', 'VFSTX', 'ORCL', 'UIS', 'HSII', 'PETS', 'BBBY', 'RPXC', 'TZOO', 'DLB', 'SPLS', 'CHE', 'INTC', 'CF', 'GTN', 'FFIV', 'ATML', 'BAH', 'DHX', 'HRB', 'VIAB', 'LMT', 'NOC', 'VWO', 'ROST']

for stockName in stocks.keys():
    stockName = DataReader(stockName,  "yahoo", datetime(2013,1,1), datetime(2013,8,1))
4

2 回答 2

7

如果你只是迭代股票,你可以直接调用它stocks

DataReader(stocks, 'yahoo', datetime(2013, 1, 1), datetime(2013, 8, 1))

您不需要迭代,因为get_data_yahoo它会为您完成。你会得到 a Panel,你可以像 a dictof DataFrames 一样使用它。你甚至不需要打电话stocks.keys(),因为

for key in dict(a=1, b=2, c=3):
    print key

将打印

a
b
c

结果如下:

In [3]: p = DataReader(stocks, 'yahoo', datetime.datetime(2013, 1, 1), datetime.datetime(2013, 8, 1))

In [4]: p
Out[4]:
<class 'pandas.core.panel.Panel'>
Dimensions: 6 (items) x 147 (major_axis) x 31 (minor_axis)
Items axis: Open to Adj Close
Major_axis axis: 2013-01-02 00:00:00 to 2013-08-01 00:00:00
Minor_axis axis: AAPL to WDC

如果您希望能够通过属性访问访问股票代码,请执行

In [7]: p.swapaxes('items', 'minor').AAPL
Out[7]:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 147 entries, 2013-01-02 00:00:00 to 2013-08-01 00:00:00
Data columns (total 6 columns):
Open         147  non-null values
High         147  non-null values
Low          147  non-null values
Close        147  non-null values
Volume       147  non-null values
Adj Close    147  non-null values
dtypes: float64(6)

编辑:操纵结果要比填充 a并用它做一些事情要容易得多。Paneldict

你可以用它做各种有趣的事情。metric以下是按、stock和分组的百分比变化date

In [127]: df = p.to_frame(filter_observations=False)

In [128]: res = df.stack().reset_index()

In [129]: res.columns = ['date', 'metric', 'stock', 'value']

In [130]: res.set_index('date').groupby(['metric', 'stock']).apply(lambda x: x.value.pct_change()).stack()
Out[130]:
metric     stock  date
Adj Close  AAPL   2013-01-03   -0.013
                  2013-01-04   -0.028
                  2013-01-07   -0.006
                  2013-01-08    0.003
                  2013-01-09   -0.016
                  2013-01-10    0.012
                  2013-01-11   -0.006
                  2013-01-14   -0.036
                  2013-01-15   -0.032
                  2013-01-16    0.042
                  2013-01-17   -0.007
                  2013-01-18   -0.005
                  2013-01-22    0.010
                  2013-01-23    0.018
                  2013-01-24   -0.124
...
Volume  WDC    2013-07-12   -0.083
               2013-07-15   -0.179
               2013-07-16   -0.302
               2013-07-17   -0.168
               2013-07-18    0.589
               2013-07-19    0.003
               2013-07-22    0.049
               2013-07-23    0.526
               2013-07-24    0.176
               2013-07-25    0.616
               2013-07-26   -0.363
               2013-07-29   -0.357
               2013-07-30    0.554
               2013-07-31   -0.252
               2013-08-01   -0.158
Length: 27010, dtype: float64

天空是极限pandas

于 2013-08-21T17:08:21.760 回答
4

stockName 是一个在股票代码列表中循环的变量。它包含股票代码字符串。当您将 DataFrame 分配给它时,此 DataFrame 在下一轮for循环中丢失。

创建另一个变量,dict例如,您将股票数据分配到:

stockdata = {}
for stockName in stocks:
    stockdata[stockName] = DataReader(stockName,  "yahoo", datetime(2013,1,1), datetime(2013,8,1))
于 2013-08-21T16:53:28.513 回答