7

我有一组(X,Y)坐标,将单位正方形分成子矩形。假设我的坐标是 -

         (    x1,    y1)    (    x2,    y2)      

         (0.0000,0.0000)    (0.3412,0.4175)   
         (0.7445,0.0000)    (1.0000,0.6553)   
         (0.7445,0.6553)    (1.0000,1.0000)   
         (0.0000,0.6553)    (0.7445,1.0000)   
         (0.3412,0.0000)    (0.7445,0.4175)   
         (0.3412,0.4175)    (0.7445,0.6553)   
         (0.0000,0.4175)    (0.3412,0.6553)....etc (total 10,000 coordinates)

作为一个例子,我只取了 16 组数据,这些坐标像这样分割我的正方形-

在此处输入图像描述

相似框的定义

那些具有相似数量的邻居的盒子被认为是相似的盒子。对于 box[8] 上方的图像,box[13]等有4 个最近邻。所以它们被认为是相似的盒子。

下面的图片应该清楚地表明这一点 -

在此处输入图像描述

::我的问题::

从图中我们可以看到——

对于框 [8],最近的框是:

box(1)(有 4 个邻居)

box[4](也有 4 个邻居)

box[14](有 4 个邻居)

box[16](有 4 个邻居)

所以在这种情况下,最近框的邻居之和 = 4+4+4+4 =16

同样对于box[13],最近的盒子是:

box[3](有 6 个邻居)

box[5](也有 4 个邻居)

box[6](有 3 个邻居)

box[12](有 3 个邻居)

所以在这种情况下,最近框的邻居之和 = 6+4+3+3 =16

这里(相似框)box[8] 和 box[13] 的邻居总数 = 16+16 =32。

同样,我想对所有有 4 个邻居的盒子进行分组,并找到它们最近的盒子的邻居的总和。并继续为每个相似的组。

我的代码

这是我的代码。

#include <iostream>
#include <cstdlib>
#include <vector>
#include <stdio.h>

using namespace std;

class Rect {
public:
double x1, x2, y1, y2; // coordinates

Rect(double X1, double Y1, double X2, double Y2) {
  if (X1 < X2) {
    x1 = X1; x2 = X2;
  } else {
    x2 = X1; x1 = X2;
  }
  if (Y1 < Y2) {
    y1 = Y1; y2 = Y2;
  } else {
    y2 = Y1; y1 = Y2;
  }


}

bool isAdjacent(Rect rect) {
    if (x1 == rect.x1 || x1 == rect.x2 ||
        x2 == rect.x1 || x2 == rect.x2) {
      // use only < when comparing y1 and rect.y2 avoids sharing only a corner
      if (y1 >= rect.y1 && y1 < rect.y2) {
        return true;
      }
      if (y2 > rect.y1 && y2 <= rect.y2) {
        return true;
      }
      if (rect.y1 >= y1 && rect.y1 < y2) {
        return true;
      }
      if (rect.y2 > y1 && rect.y2 <= y2) {
        return true;
      }
    }
    if (y1 == rect.y1 || y1 == rect.y2 ||
        y2 == rect.y1 || y2 == rect.y2) {
      if (x1 >= rect.x1 && x1 < rect.x2) {
        return true;
      }
      if (x2 > rect.x1 && x2 <= rect.x2) {
        return true;
      }
      if (rect.x1 >= x1 && rect.x1 < x2) {
        return true;
      }
      if (rect.x2 > x1 && rect.x2 <= x2) {
        return true;
      }
    }
    return false;
  }

};



void isNearest(int b){

vector<Rect> rects;     
                //Rect(  x1 ,  y1  ,   x2  ,  y2   ) 
  rects.push_back(Rect(0.0000,0.0000, 0.8147,0.1355));
  rects.push_back(Rect(0.8147,0.0000, 1.0000,0.1355));

  rects.push_back(Rect(0.8147,0.1355, 0.9058,0.8350));
  rects.push_back(Rect(0.0000,0.1355, 0.1270,0.9689));

  rects.push_back(Rect(0.9058,0.1355, 0.9134,0.2210));
  rects.push_back(Rect(0.9058,0.8350, 1.0000,1.0000));
  rects.push_back(Rect(0.8147,0.8350, 0.9058,1.0000));


  rects.push_back(Rect(0.1270,0.1355, 0.6324,0.3082));
  rects.push_back(Rect(0.1270,0.9689, 0.8147,1.0000));
  rects.push_back(Rect(0.0000,0.9689, 0.1270,1.0000));

  rects.push_back(Rect(0.9134,0.1355, 1.0000,0.2210));
  rects.push_back(Rect(0.9134,0.2210, 1.0000,0.8350));
  rects.push_back(Rect(0.9058,0.2210, 0.9134,0.8350));


  rects.push_back(Rect(0.6324,0.1355, 0.8147,0.3082));
  rects.push_back(Rect(0.6324,0.3082, 0.8147,0.9689));
  rects.push_back(Rect(0.1270,0.3082, 0.6324,0.9689));


  int nearBox_count = 0;

  double TotalArea=0;


  for (int x = 0; x < rects.size(); ++x) {

    if (rects[b].isAdjacent(rects[x])) {


      if (x==b) {
continue; //this is our box , so do not count it.
}


nearBox_count++;

printf("box[%d] is nearest to box[%d]  \n", (b+1), (x+1));

}
}

printf("Total number of nearest box for [%d] is %d  \n",(b+1),nearBox_count );
printf("\n");

}


int main() {

  for (int i = 0; i < 16; ++i)
  {
    isNearest(i);
  }

return 0;
}

它给出了这样的正确结果-

box[1] is nearest to box[2]  
box[1] is nearest to box[4]  
box[1] is nearest to box[8]  
box[1] is nearest to box[14]  
Total number of nearest box for [1] is 4  

box[2] is nearest to box[1]  
box[2] is nearest to box[3]  
box[2] is nearest to box[5]  
box[2] is nearest to box[11]  
Total number of nearest box for [2] is 4  

box[3] is nearest to box[2]  
box[3] is nearest to box[5]  
box[3] is nearest to box[7]  
box[3] is nearest to box[13]  
box[3] is nearest to box[14]  
box[3] is nearest to box[15]  
Total number of nearest box for [3] is 6  

box[4] is nearest to box[1]  
box[4] is nearest to box[8]  
box[4] is nearest to box[10]  
box[4] is nearest to box[16]  
Total number of nearest box for [4] is 4  

box[5] is nearest to box[2]  
box[5] is nearest to box[3]  
box[5] is nearest to box[11]  
box[5] is nearest to box[13]  
Total number of nearest box for [5] is 4  

box[6] is nearest to box[7]  
box[6] is nearest to box[12]  
box[6] is nearest to box[13]  
Total number of nearest box for [6] is 3  

box[7] is nearest to box[3]  
box[7] is nearest to box[6]  
box[7] is nearest to box[9]  
box[7] is nearest to box[15]  
Total number of nearest box for [7] is 4  

box[8] is nearest to box[1]  
box[8] is nearest to box[4]  
box[8] is nearest to box[14]  
box[8] is nearest to box[16]  
Total number of nearest box for [8] is 4  

box[9] is nearest to box[7]  
box[9] is nearest to box[10]  
box[9] is nearest to box[15]  
box[9] is nearest to box[16]  
Total number of nearest box for [9] is 4  

box[10] is nearest to box[4]  
box[10] is nearest to box[9]  
Total number of nearest box for [10] is 2  

box[11] is nearest to box[2]  
box[11] is nearest to box[5]  
box[11] is nearest to box[12]  
Total number of nearest box for [11] is 3  

box[12] is nearest to box[6]  
box[12] is nearest to box[11]  
box[12] is nearest to box[13]  
Total number of nearest box for [12] is 3  

box[13] is nearest to box[3]  
box[13] is nearest to box[5]  
box[13] is nearest to box[6]  
box[13] is nearest to box[12]  
Total number of nearest box for [13] is 4  

box[14] is nearest to box[1]  
box[14] is nearest to box[3]  
box[14] is nearest to box[8]  
box[14] is nearest to box[15]  
Total number of nearest box for [14] is 4  

box[15] is nearest to box[3]  
box[15] is nearest to box[7]  
box[15] is nearest to box[9]  
box[15] is nearest to box[14]  
box[15] is nearest to box[16]  
Total number of nearest box for [15] is 5  

box[16] is nearest to box[4]  
box[16] is nearest to box[8]  
box[16] is nearest to box[9]  
box[16] is nearest to box[15]  
Total number of nearest box for [16] is 4  

虽然它可以识别最近的盒子并计算邻居的数量,但我不知道如何对相似的盒子进行分组(如上所述)并找到总和。

我被困在这里。谁能帮我?

更新的代码片段

vector<CheckRect> rects;

unsigned isNearest(unsigned b, vector<unsigned>& neighbours) {

  unsigned nearBox_count = 0;

  for (unsigned x = 0; x < rects.size(); ++x) {
    if (rects[b].isAdjacent(rects[x])) {
      if (x==b) continue; //this is our box , so do not count it.
      nearBox_count++;
      printf("box[%d] is nearest to box[%d]  \n", (b+1), (x+1));
      neighbours.push_back(x);
    }
  }

  printf("Total number of nearest box for [%d] is %d  \n",
        (b+1), nearBox_count );
  printf("\n");

  return nearBox_count;
}

int main(){

cin>>N;

for(int b=0; b<N; b++){

  ifstream inputFile1("RectCoordinates.txt"); //input from the file previously generated
  int rect_number;
  double xa0,ya0,xa1,ya1;
  int neighbours;
  isNearest( b, &neighbours);// This is the line that causing my ERROR


  }
 vector<unsigned> nearBox_count(rects.size());
  vector< vector<unsigned> > neighbours(rects.size());
  for (unsigned i = 0; i < rects.size(); ++i) {
    nearBox_count[i] = isNearest(i, neighbours[i]);
  }

  // Calculate the sums of neighbouring boxes
  vector<unsigned> neighCount(rects.size(), 0);
  for (unsigned i = 0; i < rects.size(); i++) {
    for (unsigned j = 0; j < neighbours[i].size(); j++) {
      neighCount[i] += nearBox_count[neighbours[i][j]];
    }
  }

  // Calculate your result
  map<unsigned,unsigned> finalCount;
  for (unsigned i = 0; i < rects.size(); i++)
  {
    if (finalCount.count(nearBox_count[i]) == 0)
      finalCount[nearBox_count[i]] = neighCount[i];
    else
      finalCount[nearBox_count[i]] += neighCount[i];
  }

  // Print the result
  for (map<unsigned,unsigned>::iterator it = finalCount.begin();
        it != finalCount.end(); ++it) {
    printf("Sum neighbours for the neighbours of similar boxes with %d "
           "neighbours is %d\n", it->first, it->second);
  }

  return 0;
}

给我错误-

ss.cpp: In function ‘int main()’:
ss.cpp:102:29: error: invalid initialization of reference of type ‘std::vector<unsigned int>&’ from expression of type ‘unsigned int’
ss.cpp:22:10: error: in passing argument 2 of ‘unsigned int isNearest(unsigned int, std::vector<unsigned int>&)’

我该如何解决?

4

4 回答 4

3

与其尝试在某些数据结构中维护矩形之间的关系,不如让矩形对象本身智能并知道它的邻居数量和它们是谁,这可能是一个更好的主意。

例如(不完整的原型来说明想法):

class Rect {
public:
//methods
Rect(double X1, double Y1, double X2, double Y2);

//const access
double getX1() const;
double getX2() const;
double getY1() const;
double getY2() const;

int numNeighbors() const { return neighbors.size();}
int sumOfNeighbors() const { int res(0); for(size_t i=0;i< neighbors.size();++i) res += neighbors[i]->numNeighbors(); return res;}
std::vector<Rect*> getNeighbors() {return neighbors};

void addNeighbor(Rect* newNeighbor) {neighbors.push_back(newNeighbor);}

//data
private:

double x1, x2, y1, y2; // coordinates
std::vector<Rect*> neighbors;
};

使用这样的 rect 类,您可以向每个矩形添加邻居,检索每个矩形的所有邻居及其所有邻居 - 所有关系都在 rect 本身而不是一些外部对象中维护,主程序的代码应该非常少。

填充矩形后,您可以简单地遍历它们,选择具有所需数量的邻居,并对它们进行任何操作。

于 2013-08-21T17:17:08.010 回答
1

我想如果你想彻底简化所有这些,你可以使用 Kobelevskiy 先生的建议:

#include <iostream>
#include <cstdlib>
#include <vector>
#include <stdio.h>

using namespace std;

class Rect {
public:
double x1, x2, y1, y2; // coordinates

//methods
Rect(double X1, double Y1, double X2, double Y2) {
  if (X1 < X2) {
    x1 = X1; x2 = X2;
  } else {
    x2 = X1; x1 = X2;
  }
  if (Y1 < Y2) {
    y1 = Y1; y2 = Y2;
  } else {
    y2 = Y1; y1 = Y2;
  }
}

~Rect()
{
};

int numNeighbors() const { return neighbors.size();}
int sumOfNeighbors() const { int res(0); for(size_t i=0;i< neighbors.size();++i) res += neighbors[i]->numNeighbors(); return res;}
std::vector<Rect*> getNeighbors() {return neighbors;};

void addNeighbor(Rect* newNeighbor) {neighbors.push_back(newNeighbor);}

//data
std::vector<Rect*> neighbors;

bool isAdjacent(Rect* rect) {
    if (x1 == rect->x1 || x1 == rect->x2 ||
        x2 == rect->x1 || x2 == rect->x2) {
      // use only < when comparing y1 and rect->y2 avoids sharing only a corner
      if (y1 >= rect->y1 && y1 < rect->y2) {
        return true;
      }
      if (y2 > rect->y1 && y2 <= rect->y2) {
        return true;
      }
      if (rect->y1 >= y1 && rect->y1 < y2) {
        return true;
      }
      if (rect->y2 > y1 && rect->y2 <= y2) {
        return true;
      }
    }
    if (y1 == rect->y1 || y1 == rect->y2 ||
        y2 == rect->y1 || y2 == rect->y2) {
      if (x1 >= rect->x1 && x1 < rect->x2) {
        return true;
      }
      if (x2 > rect->x1 && x2 <= rect->x2) {
        return true;
      }
      if (rect->x1 >= x1 && rect->x1 < x2) {
        return true;
      }
      if (rect->x2 > x1 && rect->x2 <= x2) {
        return true;
      }
    }
    return false;
  }

};

vector<Rect*> rects;

void CalculateAdjacentsForRect(unsigned int rects_element){

    for (unsigned int x = 0; x < rects.size(); x++) {
        if (rects[rects_element]->isAdjacent(rects[x])) {
            if (x==rects_element) {
                continue; //this is our box , so do not count it.
            }
            rects[rects_element]->addNeighbor(rects[x]);
        }
    }
}

const int MAX_ADJACENT_RECTS = 10;

int main() {

                    //Rect(  x1 ,  y1  ,   x2  ,  y2   )
    rects.push_back(&Rect(0.0000,0.0000, 0.8147,0.1355));
    rects.push_back(&Rect(0.8147,0.0000, 1.0000,0.1355));

    rects.push_back(&Rect(0.8147,0.1355, 0.9058,0.8350));
    rects.push_back(&Rect(0.0000,0.1355, 0.1270,0.9689));

    rects.push_back(&Rect(0.9058,0.1355, 0.9134,0.2210));
    rects.push_back(&Rect(0.9058,0.8350, 1.0000,1.0000));
    rects.push_back(&Rect(0.8147,0.8350, 0.9058,1.0000));


    rects.push_back(&Rect(0.1270,0.1355, 0.6324,0.3082));
    rects.push_back(&Rect(0.1270,0.9689, 0.8147,1.0000));
    rects.push_back(&Rect(0.0000,0.9689, 0.1270,1.0000));

    rects.push_back(&Rect(0.9134,0.1355, 1.0000,0.2210));
    rects.push_back(&Rect(0.9134,0.2210, 1.0000,0.8350));
    rects.push_back(&Rect(0.9058,0.2210, 0.9134,0.8350));


    rects.push_back(&Rect(0.6324,0.1355, 0.8147,0.3082));
    rects.push_back(&Rect(0.6324,0.3082, 0.8147,0.9689));
    rects.push_back(&Rect(0.1270,0.3082, 0.6324,0.9689));

    for (unsigned int i = 0; i < rects.size(); i++)
    {
        CalculateAdjacentsForRect(i);
    }

    for (unsigned int i = 0; i < rects.size(); i++)
    {
        cout << "\nRect" << i << " has a neighbor sum of " << rects[i]->sumOfNeighbors();
    }

    cout << "\n";

    for (int ix = 0; ix < MAX_ADJACENT_RECTS; ix++)
    {
        int num_rects_with_this_num_of_adjacents = 0;
        int num_adjacents_total_for_similar_rects = 0;
        for (unsigned int i = 0; i < rects.size(); i++) {
            if ( rects[i]->numNeighbors() == ix ) {
               num_rects_with_this_num_of_adjacents++;
               num_adjacents_total_for_similar_rects += rects[i]->sumOfNeighbors();
            }
        }
        cout << "\nThere are " << num_rects_with_this_num_of_adjacents << " rects with " << ix << " adjacent rects. They have a cum neighbor sum of " << num_adjacents_total_for_similar_rects;
    }

    return 0;
}
于 2013-08-22T14:45:15.407 回答
0

好吧,我想你可以使用向量,但这种方式会占用大量内存空间。说,制作向量 4neighbours - 乍一看,我会说每个盒子至少有 4 个邻居(但是你必须为每个可能的邻居数量做这个 - 希望它可以被计算出来,它不会是超级大)。然后,在检查每个矩形的邻居数量时,对相应的向量使用 pushback。

printf("Total number of nearest box for [%d] is %d  \n",(b+1),nearBox_count );
if(nearBox_count == 4)
 4neighbours.pushback(rects[b]);
else if (nearBox_count == 5)
 5neighbours.pushback(rects[b]);
else if -etc-

然后,遍历向量并为向量的每个成员检查邻居,并为每个邻居计算邻居并将其相加(您将嵌套两个循环 - 循环内的循环)

示例:未编码

int TotalNeighbours = 0;
while(go through all the boxes in the vector)
{
    while(go through all the neighbours of each box)
    {
     TotalNeighbours++;
    }
}

我相信这样的事情可能会奏效,但有上述限制。根据邻居的最大数量:

  • 大量内存使用;
  • 大量的书面代码(大量的 if 语句);

编辑:一个盒子可以有 0 个邻居,其余的至少有 1 个邻居,而不是 4 个。

于 2013-08-21T16:58:17.943 回答
0

除了尝试计算您的价值外,我还对您的代码进行了一些小改动。

由于您的所有列表索引都不是负数,并且将来您可能会有大量的矩形,因此我建议您将所有ints 放入unsigned. 这有一个额外的优势,即在下面的代码中抑制某些关于比较有符号和无符号整数的编译器警告。

我建议您进行的第二个更改是rects只声明一次,而不是每次迭代时声明isNearest。在下面的代码中,我通过创建rects一个全局变量并创建一个单独的函数来初始化它来实现这一点。通过创建rects一个全局变量,您现在可以将所有16s替换为(减少在添加完整数据集时rects.size()忘记更改的机会)。16

#include <iostream>
#include <fstream>
#include <cstdlib>
#include <vector>
#include <map>
#include <stdio.h>

using namespace std;

class Rect {
public:
  double x1, x2, y1, y2; // coordinates

  Rect(double X1, double Y1, double X2, double Y2) {
    if (X1 < X2) {
      x1 = X1; x2 = X2;
    } else {
      x2 = X1; x1 = X2;
    }
    if (Y1 < Y2) {
      y1 = Y1; y2 = Y2;
    } else {
      y2 = Y1; y1 = Y2;
    }
}

bool isAdjacent(Rect rect) {
    if (x1 == rect.x1 || x1 == rect.x2 ||
        x2 == rect.x1 || x2 == rect.x2) {
      // use only < when comparing y1 and rect.y2 avoids sharing only a corner
      if (y1 >= rect.y1 && y1 < rect.y2) {
        return true;
      }
      if (y2 > rect.y1 && y2 <= rect.y2) {
        return true;
      }
      if (rect.y1 >= y1 && rect.y1 < y2) {
        return true;
      }
      if (rect.y2 > y1 && rect.y2 <= y2) {
        return true;
      }
    }
    if (y1 == rect.y1 || y1 == rect.y2 ||
        y2 == rect.y1 || y2 == rect.y2) {
      if (x1 >= rect.x1 && x1 < rect.x2) {
        return true;
      }
      if (x2 > rect.x1 && x2 <= rect.x2) {
        return true;
      }
      if (rect.x1 >= x1 && rect.x1 < x2) {
        return true;
      }
      if (rect.x2 > x1 && rect.x2 <= x2) {
        return true;
      }
    }
    return false;
  }
};

vector<Rect> rects;

unsigned isNearest(unsigned b, vector<unsigned>& neighbours) {

  unsigned nearBox_count = 0;

  for (unsigned x = 0; x < rects.size(); ++x) {
    if (rects[b].isAdjacent(rects[x])) {
      if (x==b) continue; //this is our box , so do not count it.
      nearBox_count++;
      printf("box[%d] is nearest to box[%d]  \n", (b+1), (x+1));
      neighbours.push_back(x);
    }
  }

  printf("Total number of nearest box for [%d] is %d  \n",
        (b+1), nearBox_count );
  printf("\n");

  return nearBox_count;
}

void initRects(void) {

                //Rect(  x1 ,  y1  ,   x2  ,  y2   ) 
  rects.push_back(Rect(0.0000,0.0000, 0.8147,0.1355));
  rects.push_back(Rect(0.8147,0.0000, 1.0000,0.1355));

  rects.push_back(Rect(0.8147,0.1355, 0.9058,0.8350));
  rects.push_back(Rect(0.0000,0.1355, 0.1270,0.9689));

  rects.push_back(Rect(0.9058,0.1355, 0.9134,0.2210));
  rects.push_back(Rect(0.9058,0.8350, 1.0000,1.0000));
  rects.push_back(Rect(0.8147,0.8350, 0.9058,1.0000));


  rects.push_back(Rect(0.1270,0.1355, 0.6324,0.3082));
  rects.push_back(Rect(0.1270,0.9689, 0.8147,1.0000));
  rects.push_back(Rect(0.0000,0.9689, 0.1270,1.0000));

  rects.push_back(Rect(0.9134,0.1355, 1.0000,0.2210));
  rects.push_back(Rect(0.9134,0.2210, 1.0000,0.8350));
  rects.push_back(Rect(0.9058,0.2210, 0.9134,0.8350));


  rects.push_back(Rect(0.6324,0.1355, 0.8147,0.3082));
  rects.push_back(Rect(0.6324,0.3082, 0.8147,0.9689));
  rects.push_back(Rect(0.1270,0.3082, 0.6324,0.9689));
}

void readRects(const string& filename) {

  ifstream fpInput(filename.c_str());
  double dTemp[4];

  while (true) {
    for (unsigned i = 0; i < 4; i++) fpInput >> dTemp[i];
    if (!fpInput.good()) break;
    rects.push_back(Rect(dTemp[0], dTemp[1], dTemp[2], dTemp[3]));
  }

  fpInput.close();
}

int main() {

  // Initialize the vector rects
  //initRects();
  readRects("RectCoordinates.txt");

  vector<unsigned> nearBox_count(rects.size());
  vector< vector<unsigned> > neighbours(rects.size());
  for (unsigned i = 0; i < rects.size(); ++i) {
    nearBox_count[i] = isNearest(i, neighbours[i]);
  }

  // Calculate the sums of neighbouring boxes
  vector<unsigned> neighCount(rects.size(), 0);
  for (unsigned i = 0; i < rects.size(); i++) {
    for (unsigned j = 0; j < neighbours[i].size(); j++) {
      neighCount[i] += nearBox_count[neighbours[i][j]];
    }
  }

  // Calculate your result
  map<unsigned,unsigned> finalCount;
  for (unsigned i = 0; i < rects.size(); i++)
  {
    if (finalCount.count(nearBox_count[i]) == 0) {
      finalCount[nearBox_count[i]] = neighCount[i];
    } else {
      finalCount[nearBox_count[i]] += neighCount[i];
    }
  }

  // Print the result
  for (map<unsigned,unsigned>::iterator it = finalCount.begin();
        it != finalCount.end(); ++it) {
    printf("Sum neighbours for the neighbours of similar boxes with %d "
           "neighbours is %d\n", it->first, it->second);
  }

  return 0;
}

更新:现在可以通过Rect在源文件中指定 s 或从外部文件加载来使用上面的代码。在上面的修改示例中,输入文件是RectCoordinates.txt

0.0000  0.0000  0.8147  0.1355
0.8147  0.0000  1.0000  0.1355

0.8147  0.1355  0.9058  0.8350
0.0000  0.1355  0.1270  0.9689

0.9058  0.1355  0.9134  0.2210
0.9058  0.8350  1.0000  1.0000
0.8147  0.8350  0.9058  1.0000


0.1270  0.1355  0.6324  0.3082
0.1270  0.9689  0.8147  1.0000
0.0000  0.9689  0.1270  1.0000

0.9134  0.1355  1.0000  0.2210
0.9134  0.2210  1.0000  0.8350
0.9058  0.2210  0.9134  0.8350


0.6324  0.1355  0.8147  0.3082
0.6324  0.3082  0.8147  0.9689
0.1270  0.3082  0.6324  0.9689

以上输出结果:

Sum neighbours for the neighbours of similar boxes with 2 neighbours is 8
Sum neighbours for the neighbours of similar boxes with 3 neighbours is 32
Sum neighbours for the neighbours of similar boxes with 4 neighbours is 165
Sum neighbours for the neighbours of similar boxes with 5 neighbours is 22
Sum neighbours for the neighbours of similar boxes with 6 neighbours is 25
于 2013-08-21T17:22:29.863 回答