要获得自动选择岭参数的情况的系数表,您应该将summary()
结果存储为某个对象,然后访问列表元素summaries$summary1$coefficients
。summary()
您可以使用 function 看到对象的整体结构str(sumar)
。
sumar<-summary(mod)
sumar$summaries$summary1$coefficients
Estimate Scaled estimate Std. Error (scaled) t value (scaled) Pr(>|t|)
(Intercept) 1.533385893 NA NA NA NA
SNP1 0.277296215 4.045408706 0.2661197 15.20146202 0.000000e+00
SNP2 -0.110457822 -1.256153622 0.2163319 5.80660491 6.375233e-09
SNP3 -0.110457822 -1.256153622 0.2163319 5.80660491 6.375233e-09
SNP4 0.005229639 0.011635212 0.3716925 0.03130332 9.750276e-01
SNP5 0.531172545 6.323006229 0.3153685 20.04958196 0.000000e+00
SNP6 -0.119163534 -1.373227248 0.2230470 6.15667175 7.428960e-10
SNP7 0.113843942 0.113730041 0.3721807 0.30557749 7.599264e-01
SNP8 -0.099148877 -1.028580596 0.3558067 2.89084074 3.842128e-03
SNP9 -0.008320553 -0.008312229 0.3723863 0.02232152 9.821915e-01
SNP10 0.058562323 0.101128163 0.3715670 0.27216670 7.854938e-01
SNP11 -0.096526424 -1.495698673 0.3292496 4.54275034 5.552500e-06
SNP12 -0.334279101 -0.333944654 0.3722483 0.89710186 3.696646e-01
要仅获取 t 值,请选择此表的第四列。
> sumar$summaries$summary1$coefficients[,4]
(Intercept) SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9
NA 15.20146202 5.80660491 5.80660491 0.03130332 20.04958196 6.15667175 0.30557749 2.89084074 0.02232152
SNP10 SNP11 SNP12
0.27216670 4.54275034 0.89710186
要访问由 summary() 函数生成的其他元素,您只需选择适当的列表元素。摘要对象的结构显示要选择的元素。
str(sumar$summaries$summary1)
List of 4
$ coefficients: num [1:13, 1:5] 1.53339 0.2773 -0.11046 -0.11046 0.00523 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:13] "(Intercept)" "SNP1" "SNP2" "SNP3" ...
.. ..$ : chr [1:5] "Estimate" "Scaled estimate" "Std. Error (scaled)" "t value (scaled)" ...
$ df : Named num [1:3] 3.12 1.21 5.04
..- attr(*, "names")= chr [1:3] "model" "variance" "residual"
$ nPCs : int 1
$ lambda : num 2.21
例如得到df
sumar$summaries$summary1$df
model variance residual
3.120934 1.205412 5.036457
也可以在不创建新对象的情况下选择结果 - 只需使用summary(mod)
而不是对象名称sumar
。
summary(mod)$summaries$summary1$df
model variance residual
3.120934 1.205412 5.036457