我将如何执行不区分大小写的 pandas.concat?
df1 = pd.DataFrame({"a":[1,2,3]},index=["a","b","c"])
df2 = pd.DataFrame({"b":[1,2,3]},index=["a","b","c"])
df1a = pd.DataFrame({"A":[1,2,3]},index=["A","B","C"])
pd.concat([df1, df2],axis=1)
   a  b
a  1  1
b  2  2
c  3  3
但这不起作用:
pd.concat([df1, df1a],axis=1)
    a   A
A NaN   1
B NaN   2
C NaN   3
a   1 NaN
b   2 NaN
c   3 NaN
是否有捷径可寻?
我对 concat on a 有同样的问题Series。
这适用于DataFrame:
pd.DataFrame([11,21,31],index=pd.MultiIndex.from_tuples([("A",x) for x in ["a","B","c"]])).rename(str.lower)
但这不适用于 a Series:   
pd.Series([11,21,31],index=pd.MultiIndex.from_tuples([("A",x) for x in ["a","B","c"]])).rename(str.lower)
TypeError: descriptor 'lower' requires a 'str' object but received a 'tuple'
要重命名,请DataFrames使用:
def rename_axis(self, mapper, axis=1):
        index = self.axes[axis]
        if isinstance(index, MultiIndex):
            new_axis = MultiIndex.from_tuples([tuple(mapper(y) for y in x) for x in index], names=index.names)
        else:
            new_axis = Index([mapper(x) for x in index], name=index.name)
而重命名时Series:
result.index = Index([mapper_f(x) for x in self.index], name=self.index.name)
所以我更新的问题是如何使用系列执行重命名/不区分大小写的连接?