我正在处理大量专利数据。每行是一个单独的专利,列包含包括专利申请年份和引用次数在内的信息。
> head(p)
allcites appyear asscode assgnum cat cat_ocl cclass country ddate gday gmonth
1 6 1974 2 1 6 6 2/161.4 US 6 1
2 0 1974 2 1 6 6 5/11 US 6 1
3 20 1975 2 1 6 6 5/430 US 6 1
4 4 1974 1 NA 5 <NA> 114/354 6 1
5 1 1975 1 NA 6 6 12/142S 6 1
6 3 1972 2 1 6 6 15/53.4 US 6 1
gyear hjtwt icl icl_class icl_maingroup iclnum nclaims nclass nclass_ocl
1 1976 1 A41D 1900 A41D 19 1 4 2 2
2 1976 1 A47D 701 A47D 7 1 3 5 5
3 1976 1 A47D 702 A47D 7 1 24 5 5
4 1976 1 B63B 708 B63B 7 1 7 114 9
5 1976 1 A43D 900 A43D 9 1 9 12 12
6 1976 1 B60S 304 B60S 3 1 12 15 15
patent pdpass state status subcat subcat_ocl subclass subclass1 subclass1_ocl
1 3930271 10030271 IL 63 63 161.4 161.4 161
2 3930272 10156902 PA 65 65 11.0 11 11
3 3930273 10112031 MO 65 65 430.0 430 331
4 3930274 NA CA 55 NA 354.0 354 2
5 3930275 NA NJ 63 63 NA 142S 142
6 3930276 10030276 IL 69 69 53.4 53.4 53
subclass_ocl term_extension uspto_assignee gdate
1 161 0 251415 1976-01-06
2 11 0 246000 1976-01-06
3 331 0 10490 1976-01-06
4 2 0 0 1976-01-06
5 142 0 0 1976-01-06
6 53 0 243840 1976-01-06
我正在尝试创建一个新的数据框,其中包含1970 年至 2006 年专利的allcites
每个申请年 ( appyear
) 的平均引用次数 ( ),按类别 ( cat
) 分隔(数据一直追溯到 1901 年)。我成功地做到了这一点,但我觉得我的解决方案有点临时,没有利用 R 的特定功能。这是我的解决方案
#citations by category
citescat <- data.frame("chem"=integer(37),
"comp"=integer(37),
"drugs"=integer(37),
"ee"=integer(37),
"mech"=integer(37),
"other"=integer(37),
"year"=1970:2006
)
for (i in 1:37) {
for (j in 1:6) {
citescat[i,j] <- mean(p$allcites[p$appyear==(i+1969) & p$cat==j], na.rm=TRUE)
}
}
我想知道是否有一种简单的方法可以做到这一点,而无需使用嵌套的 for 循环,这样可以很容易地对其进行小调整。除了这个之外,我很难准确地确定我在寻找什么,但是我的代码对我来说看起来很丑,我怀疑在 R 中有更好的方法来做到这一点。