0

我使用reddit praw api编写了一些代码来查找reddit上提交标题中最流行的单词。

import nltk
import praw

picksub = raw_input('\nWhich subreddit do you want to analyze? r/')
many = input('\nHow many of the top words would you like to see? \n\t> ')

print 'Getting the top %d most common words from r/%s:' % (many,picksub)
r = praw.Reddit(user_agent='get the most common words from chosen subreddit')
submissions = r.get_subreddit(picksub).get_top_from_all(limit=200)

hey = []

for x in submissions:
    hey.extend(str(x).split(' '))   

fdist = nltk.FreqDist(hey) # creates a frequency distribution for words in 'hey'
top_words = fdist.keys()

common_words = ['its','am', 'ago','took', 'got', 'will', 'been', 'get', 'such','your','don\'t', 'if', 'why', 'do', 'does', 'or', 'any', 'but', 'they', 'all', 'now','than','into','can', 'i\'m','not','so','just', 'out','about','have','when', 'would' ,'where', 'what', 'who' 'I\'m','says' 'not', '', 'over', '_', '-','after', 'an','for', 'who', 'by', 'from', 'it', 'how', 'you', 'about' 'for', 'on', 'as', 'be', 'has', 'that', 'was', 'there', 'with','what', 'we', '::', 'to', 'the', 'of', ':', '...', 'a', 'at', 'is', 'my', 'in' , 'i', 'this', 'and', 'are', 'he', 'she', 'is', 'his', 'hers']
already = []
counter = 0
number = 1

print '-----------------------'
for word in top_words:  
    if word.lower() not in common_words and word.lower() not in already:
        print str(number) + ". '" + word + "'"
        counter +=1
    number +=1
    already.append(word.lower())
if counter == many:
    break
print '-----------------------\n'

所以输入 subreddit 'python' 并获得 10 个帖子返回:


  1. 'Python'
  2. '派皮'
  3. '代码'
  4. '采用'
  5. '136'
  6. '181'
  7. “会……”
  8. 'IPython'
  9. '133'

    10. '158'

我怎样才能让这个脚本不返回数字,以及像“d ...”这样的错误词?前 4 个结果是可以接受的,但我想用有意义的词代替其余的。列出 common_words 是不合理的,并且不会过滤这些错误。我对编写代码比较陌生,感谢您的帮助。

4

1 回答 1

0

我不同意。制作常用词列表是正确的,没有更简单的方法可以过滤掉,for,i,am等。但是,使用common_words列表过滤掉不是词的结果是不合理的,因为那时你必须包括你不想要的所有可能的非单词。非单词应该以不同的方式过滤掉。

一些建议:
1) common_words 应该是 a set(),因为您的列表很长,这应该加快速度。集合的in运算时间为 O(1),而列表的运算时间为 O(n)。

2)摆脱所有数字字符串是微不足道的。您可以这样做的一种方法是:

all([w.isdigit() for w in word])

如果这返回 True,那么这个词只是一系列数字。

3) 摆脱 d... 有点棘手。这取决于您如何定义非单词。这:

tf = [ c.isalpha() for c in word ]

返回 True/False 值列表(如果 char 不是字母,则返回 False)。然后,您可以计算以下值:

t = tf.count(True)
f = tf.count(False)

然后,您可以将非单词定义为其中包含比字母更多的非字母字符的非单词,以及根本包含任何非字母字符的非单词,等等。例如:

def check_wordiness(word):
    # This returns true only if a word is all letters
    return all([ c.isalpha() for c in word ])

4)在for word in top_words:区块中,你确定你没有混淆计数器和数字吗?此外,计数器和数字几乎是多余的,您可以将最后一位重写为:

for word in top_words:
    # Since you are calling .lower() so much, 
    # you probably want to define it up here
    w = word.lower() 
    if w not in common_words and w not in already:
        # String formatting is preferred over +'s
        print "%i. '%s'" % (number, word)
        number +=1
    # This could go under the if statement. You only want to add
    # words that could be added again.  Why add words that are being
    # filtered out anyways?
    already.append(w)

    # this wasn't indented correctly before
    if number == many:
        break

希望有帮助。

于 2013-08-14T22:08:07.480 回答