5

我想用 AUC 作为性能指标,但 RFE 只支持 RMSE、Rsquared、Accuracy、Kappa。如何使用自定义指标,例如 auc?

4

1 回答 1

16

summaryFunction()您必须在对象中指定自定义trainControl(),然后从中选择适当的部分度量summaryFunction()。Caret 还包括一个用于 AUC 的函数,twoClassSummary()因此您甚至不需要自己编写该函数。这是一个例子:

> library(caret)
> iris <- iris[1:100,]
> iris$Species <- as.factor(as.character(iris$Species))
> 
> tc <- trainControl(method="cv",summaryFunction=twoClassSummary,classProb=T)
> train.rf <- train(Species ~ .,data=iris, method="rf", trControl=tc, metric =  "ROC")
> train.rf
100 samples
  4 predictors
  2 classes: 'setosa', 'versicolor' 

No pre-processing
Resampling: Cross-Validation (10 fold) 

Summary of sample sizes: 90, 90, 90, 90, 90, 90, ... 

Resampling results across tuning parameters:

  mtry  ROC  Sens  Spec  ROC SD  Sens SD  Spec SD
  2     1    1     1     0       0        0      
  3     1    1     1     0       0        0      
  4     1    1     1     0       0        0      

ROC was used to select the optimal model using  the largest value.
The final value used for the model was mtry = 2. 

编辑:刚刚意识到你想要它rfe()——同样的事情也成立,但你必须以同样的方式编辑你的 rfeFuncs 对象的“摘要”元素。前任:

rfFuncs$summary <- twoClassSummary
rfe(iris[,-5],iris[,5],rfeControl = rfeControl(rfFuncs), s=2:3,metric="ROC")
Recursive feature selection

Outer resampling method: Bootstrap (25 reps) 

Resampling performance over subset size:

 Variables ROC Sens Spec ROCSD SensSD SpecSD Selected
         2   1    1    1     0      0      0        *
         3   1    1    1     0      0      0         
         4   1    1    1     0      0      0         

The top 2 variables (out of 2):
   Petal.Width, Petal.Lengt
于 2013-08-14T21:44:50.237 回答