我想用 AUC 作为性能指标,但 RFE 只支持 RMSE、Rsquared、Accuracy、Kappa。如何使用自定义指标,例如 auc?
问问题
7243 次
1 回答
16
summaryFunction()
您必须在对象中指定自定义trainControl()
,然后从中选择适当的部分度量summaryFunction()
。Caret 还包括一个用于 AUC 的函数,twoClassSummary()
因此您甚至不需要自己编写该函数。这是一个例子:
> library(caret)
> iris <- iris[1:100,]
> iris$Species <- as.factor(as.character(iris$Species))
>
> tc <- trainControl(method="cv",summaryFunction=twoClassSummary,classProb=T)
> train.rf <- train(Species ~ .,data=iris, method="rf", trControl=tc, metric = "ROC")
> train.rf
100 samples
4 predictors
2 classes: 'setosa', 'versicolor'
No pre-processing
Resampling: Cross-Validation (10 fold)
Summary of sample sizes: 90, 90, 90, 90, 90, 90, ...
Resampling results across tuning parameters:
mtry ROC Sens Spec ROC SD Sens SD Spec SD
2 1 1 1 0 0 0
3 1 1 1 0 0 0
4 1 1 1 0 0 0
ROC was used to select the optimal model using the largest value.
The final value used for the model was mtry = 2.
编辑:刚刚意识到你想要它rfe()
——同样的事情也成立,但你必须以同样的方式编辑你的 rfeFuncs 对象的“摘要”元素。前任:
rfFuncs$summary <- twoClassSummary
rfe(iris[,-5],iris[,5],rfeControl = rfeControl(rfFuncs), s=2:3,metric="ROC")
Recursive feature selection
Outer resampling method: Bootstrap (25 reps)
Resampling performance over subset size:
Variables ROC Sens Spec ROCSD SensSD SpecSD Selected
2 1 1 1 0 0 0 *
3 1 1 1 0 0 0
4 1 1 1 0 0 0
The top 2 variables (out of 2):
Petal.Width, Petal.Lengt
于 2013-08-14T21:44:50.237 回答