假设我定义了以下评分函数:
def multi_label_macro_auc(y_gt, y_pred):
n_labels = y_pred.shape[1]
auc_scores = [None] * n_labels
# Convert the multi-class ground truth to a binary ground truth
# by iterating through the labels
for label in xrange(n_labels):
auc_scores[label] = roc_auc_score((y_gt == label)*1, y_pred[:,label])
return np.mean(auc_scores)
ml_macro_auc_s = make_scorer(multi_label_macro_auc, greater_is_better=True,
needs_threshold=False, needs_proba=True)
我学习了DummyClassifier
我的数据:
dummy_clf = DummyClassifier(strategy='stratified',random_state=0)
dummy_clf.fit(X,y)
如果我然后尝试根据我的评分函数测试这个虚拟分类器:
ml_macro_auc_s(dummy_clf, X, y)
scikit-learn 抱怨:
"ValueError: AUC is defined for binary classification only"
我尝试将 a 传递probability=True
给DummyClassifier
,但它似乎不接受该参数:
dummy_clf = DummyClassifier(strategy='stratified'',random_state=0, probability=True)
如何将需要软输出的自己的记分器应用到DummyClassifier
?
更新:
y
是一个一维数组,其值在范围内[0,1,2]
X
是一个特征数组,其行数与 y 和125
columns相同