我写了一个方法来计算两个数组之间的余弦距离:
def cosine_distance(a, b):
if len(a) != len(b):
return False
numerator = 0
denoma = 0
denomb = 0
for i in range(len(a)):
numerator += a[i]*b[i]
denoma += abs(a[i])**2
denomb += abs(b[i])**2
result = 1 - numerator / (sqrt(denoma)*sqrt(denomb))
return result
在大型阵列上运行它可能会非常慢。这种方法是否有运行速度更快的优化版本?
更新:我已经尝试了迄今为止的所有建议,包括 scipy。这是要击败的版本,结合了 Mike 和 Steve 的建议:
def cosine_distance(a, b):
if len(a) != len(b):
raise ValueError, "a and b must be same length" #Steve
numerator = 0
denoma = 0
denomb = 0
for i in range(len(a)): #Mike's optimizations:
ai = a[i] #only calculate once
bi = b[i]
numerator += ai*bi #faster than exponent (barely)
denoma += ai*ai #strip abs() since it's squaring
denomb += bi*bi
result = 1 - numerator / (sqrt(denoma)*sqrt(denomb))
return result