I have a fitted a simple natural spline (df = 3) model and I'm trying to predict for some out of sample observations. Using the function predict()
, I'm able to get fitted values for in-sample observations but I've not been able to get the predicted value for new observations.
Here is my code:
library(splines)
set.seed(12345)
x <- seq(0, 2, by = 0.01)
y <- rnorm(length(x)) + 2*sin(2*pi*(x-1/4))
# My n.s fit:
fit.temp <- lm(y ~ ns(x, knots = seq(0.01, 2, by = 0.1)))
# Getting fitted values:
fit.temp.values <- predict(fit.temp,interval="prediction", level = 1 - 0.05)
# Plotting the data, the fit, and the 95% CI:
plot(x, y, ylim = c(-6, +6))
lines(x, fit.temp.values[,1], col = "darkred")
lines(x, fit.temp.values[,2], col = "darkblue", lty = 2)
lines(x, fit.temp.values[,3], col = "darkblue", lty = 2)
# Consider the points for which we want to get the predicted values:
x.new <- c(0.275, 0.375, 0.475, 0.575, 1.345)
How can I get the predicted values for x.new?
Thanks very much for your help,
p.s. I searched all related questions on SO and I didn't find the answer.