所以我一直在阅读关于 Q 学习和神经网络的文章。我相信我对此有正确的想法,但是我想对我的 NN 代码和 Q 值更新有第二意见。
我已经创建了山地车问题的 MatLab 实现和我的神经网络,我正在为 NN 部分使用神经网络工具箱。
它是一个包含 2 个输入、5-20 个隐藏(用于实验)和 3 个输出(对应于山地车中的动作)的网络
隐藏单元设置为 tansig,输出为 purelin,训练函数为 traingdm
这是正确的步骤吗?
- 获得初始状态 s -> [-0.5; 0.0]
- 使用 Qs=net(s) 运行网络……这给了我一个 1x3 Q 值矩阵,对应于初始状态 s 中的每个动作。
- 使用 e-greedy selection 选择一个动作
- 模拟山地车,得到s'(执行动作a的新状态)
- 使用 Qs_prime=net(s') 运行网络以获得 s' 的 Q 值的另一个矩阵
现在我不确定这是否正确,因为我必须弄清楚如何正确更新 NN 的权重。
- 计算 QTarget,即 =reward+gamma* 来自 s' 的最大 Q 值?
- 使用初始 s 中的 Q 值创建一个目标矩阵 (1x3),并将执行的动作 a 的相应 Q 值更改为 QTarget
- 使用 net=Train(net,s,Targets) 更新 NN 中的权重
- s=s'
- 对新的 s 重复上述所有操作
例子:
actions
1 2 3
Qs = 1.3346 -1.9000 0.2371
selected action 3(corresponding to move mountain car forward)
Qs' = 1.3328 -1.8997 0.2463
QTarget=reward+gamma*max(Qs') = -1+1.0*1.3328 = 0.3328
s= [-5.0; 0.0] and Targets = 1.3346 -1.9000 0.3328
Or I have this wrong and the Targets are 0 0 0.3328
since we don't know how good the other actions are..
这是我的 Matlab 代码(我使用 R2011 和神经网络工具箱)
%create a neural network
num_hidden=5
num_actions=3
net= newff([-1.2 0.6; -0.07 0.07;], [num_hidden,num_actions], {'tansig', 'purelin'},'traingdm');
%network weight and bias initalization
net= init(net);
%turn off the training window
net.trainParam.showWindow = false;
%neural network training parameters
net.trainParam.lr=0.01;
net.trainParam.mc=0.1;
net.trainParam.epochs=100
%parameters for q learning
epsilon=0.9;
gamma=1.0;
%parameters for Mountain car task
maxEpisodes =10;
maxSteps=5000;
reset=false;
inital_pos=-0.5;
inital_vel=0.0;
%construct the inital state
s=[inital_pos;inital_vel];
Qs=zeros(1,3);
Qs_prime=zeros(1,3);
%training for maxEpisodes
for i=1:maxEpisodes
%each episode is maxSteps long
for j = 1:maxSteps
%run the network and get Q values for current state Qs-> vector of
%current Q values for state s at time t Q(s_t)
Qs=net(s);
%select an action
if (rand() <= epsilon)
%returns max Q value over all actions
[Qs_value a]=max(Qs);
else
%return a random number between 1 and 3(inclusive)
a = randint(1,1,3)+1;
end
%simulate a step of Mountain Car
[s_prime, action, reward, reset] = SimulateMC(s,a);
%get new Q values for S_prime -> Q(s_t+1)
Qs_prime=net(s_prime);
%Compute Qtarget for weight updates given by r+y*max Q(s_t+1) over all
%actions
Q_target = reward+gamma*max(Qs_prime);
%Create a Targets matrix with the orginal state s q-values
Targets=Qs;
%change q-value of the original action to the QTarget
Targets(a)=Q_target;
% update the network for input state s and targets
[net TR]=train(net,s,Targets);
%update the state for next step
s=s_prime;
%display exactly where the car is to user the NN learns if this output reaches -0.45
disp(s(1))
if reset==true
bestSteps=j
break
end
end
%reset for new episode
reset=false;
s=[inital_pos;inital_vel];
end
%test the network
%reset state
s=[inital_pos;inital_vel];
for i=1:maxEpisodes
for j=1:maxSteps
%run the network and get Q values for current state
Qs=net(s);
%select the max action always
[Qs_value a]=max(Qs);
%simulate a step of Mountain Car
[s_prime, action, reward, reset] = SimulateMC(s,a);
s=s_prime;
disp(s(1))
end
s=[inital_pos;inital_vel];
end
谢谢