这不是真正的答案,而是带有嵌入式代码的很长的注释。我没有当前的 matlab 安装,并且在任何情况下都没有足够的知识来回答这种情况下的问题。相反,我编写了一个 Java 程序,我认为它可以满足您的要求。它使用两个 Java 类,BigInteger 和 BigDecimal。BigInteger 是一种扩展的整数格式。BigDecimal 是 BigInteger 和小数刻度的组合。
从 double 到 BigDecimal 的转换是准确的。相反方向的转换可能需要四舍五入。
我的程序中的函数xor
将其每个操作数转换为 BigDecimal。它找到一些十进制数字来移动小数点以使两个操作数都成为整数。缩放后,它转换为 BigInteger,执行实际的异或,然后转换回 BigDecimal 以撤消缩放。
The main point of this is for you to look at the results, and see whether they are what you want, and would be useful to you if you could do the same thing in Matlab. Explaining any ways in which the results are not what you want may help clarify your requirements for the Matlab experts.
Here is some test output. The top and bottom rows of each block are in decimal. The middle row is the scaled integer versions of the inputs, in hex.
Testing operands 1.100000000000000088817841970012523233890533447265625, 2
2f0a689f1b94a78f11d31b7ab806d40b1014d3f6d59 xor 558749db77f70029c77506823d22bd0000000000000 = 7a8d21446c63a7a6d6a61df88524690b1014d3f6d59
1.1 xor 2.0 = 2.8657425494106605
Testing operands 100, 200.0004999999999881765688769519329071044921875
2cd76fe086b93ce2f768a00b22a00000000000 xor 59aeee72a26b59f6380fcf078b92c4478e8a13 = 7579819224d26514cf676f0ca932c4478e8a13
100.0 xor 200.0005 = 261.9771865509636
Testing operands 120.3250000000000028421709430404007434844970703125, 120.75
d2c39898113a28d484dd867220659fbb45005915 xor d3822c338b76bab08df9fee485d1b00000000000 = 141b4ab9a4c926409247896a5b42fbb45005915
120.325 xor 120.75 = 0.7174277813579485
Testing operands 120.2300000000000039790393202565610408782958984375, 120.0000830000000036079654819332063198089599609375
d298ff20fbed5fd091d87e56002df79fc7007cb7 xor d231e5f39e1db18654cb8c43d579692616a16a1f = a91ad365f0ee56c513f215d5549eb9d1a116a8
120.23 xor 120.000083 = 0.37711627930683345
Here is the Java program:
import java.math.BigDecimal;
import java.math.BigInteger;
public class Test {
public static double xor(double a, double b) {
BigDecimal ad = new BigDecimal(a);
BigDecimal bd = new BigDecimal(b);
/*
* Shifting the decimal point right by scale will make both operands
* integers.
*/
int scale = Math.max(ad.scale(), bd.scale());
/*
* Scale both operands by, in effect, multiplying by the same power of 10.
*/
BigDecimal aScaled = ad.movePointRight(scale);
BigDecimal bScaled = bd.movePointRight(scale);
/*
* Convert the operands to integers, treating any rounding as an error.
*/
BigInteger aInt = aScaled.toBigIntegerExact();
BigInteger bInt = bScaled.toBigIntegerExact();
BigInteger resultInt = aInt.xor(bInt);
System.out.println(aInt.toString(16) + " xor " + bInt.toString(16) + " = "
+ resultInt.toString(16));
/*
* Undo the decimal point shift, in effect dividing by the same power of 10
* as was used to scale to integers.
*/
BigDecimal result = new BigDecimal(resultInt, scale);
return result.doubleValue();
}
public static void test(double a, double b) {
System.out.println("Testing operands " + new BigDecimal(a) + ", " + new BigDecimal(b));
double result = xor(a, b);
System.out.println(a + " xor " + b + " = " + result);
System.out.println();
}
public static void main(String arg[])
{
test(1.1, 2.0);
test(100, 200.0005);
test(120.325, 120.75);
test(120.23, 120.000083);
}
}