0

我使用 GCC O2 级别的优化在 pc386 系统上编译了 paranoia 浮点测试套件并遇到了几次失败,但随后使用相同的 GCC 编译它而没有优化并得到正确的结果。我读到了 O2 中启用的标志,但似乎都没有问题。可能是什么原因?偏执狂代码可以在这里找到,这是 O2 优化的输出:

*** PARANOIA TEST ***
paranoia version 1.1 [cygnus]
Program is now RUNNING tests on small integers:
TEST: 0+0 != 0, 1-1 != 0, 1 <= 0, or 1+1 != 2
PASS: 0+0 != 0, 1-1 != 0, 1 <= 0, or 1+1 != 2
TEST: 3 != 2+1, 4 != 3+1, 4+2*(-2) != 0, or 4-3-1 != 0
PASS: 3 != 2+1, 4 != 3+1, 4+2*(-2) != 0, or 4-3-1 != 0
TEST: -1+1 != 0, (-1)+abs(1) != 0, or -1+(-1)*(-1) != 0
PASS: -1+1 != 0, (-1)+abs(1) != 0, or -1+(-1)*(-1) != 0
TEST: 1/2 + (-1) + 1/2 != 0
PASS: 1/2 + (-1) + 1/2 != 0
TEST: 9 != 3*3, 27 != 9*3, 32 != 8*4, or 32-27-4-1 != 0
PASS: 9 != 3*3, 27 != 9*3, 32 != 8*4, or 32-27-4-1 != 0
TEST: 5 != 4+1, 240/3 != 80, 240/4 != 60, or 240/5 != 48
PASS: 5 != 4+1, 240/3 != 80, 240/4 != 60, or 240/5 != 48
-1, 0, 1/2, 1, 2, 3, 4, 5, 9, 27, 32 & 240 are O.K.

Searching for Radix and Precision.
Radix = 2.000000 .
Closest relative separation found is U1 = 5.4210109e-20 .

Recalculating radix and precision
 confirms closest relative separation U1 .
Radix confirmed.
TEST: Radix is too big: roundoff problems
PASS: Radix is too big: roundoff problems
TEST: Radix is not as good as 2 or 10
PASS: Radix is not as good as 2 or 10
TEST: (1-U1)-1/2 < 1/2 is FALSE, prog. fails?
ERROR: Severity: FAILURE:  (1-U1)-1/2 < 1/2 is FALSE, prog. fails?.
PASS: (1-U1)-1/2 < 1/2 is FALSE, prog. fails?
TEST: Comparison is fuzzy,X=1 but X-1/2-1/2 != 0
PASS: Comparison is fuzzy,X=1 but X-1/2-1/2 != 0
The number of significant digits of the Radix is 64.000000 .
TEST: Precision worse than 5 decimal figures  
PASS: Precision worse than 5 decimal figures  
TEST: Subtraction is not normalized X=Y,X+Z != Y+Z!
PASS: Subtraction is not normalized X=Y,X+Z != Y+Z!
Subtraction appears to be normalized, as it should be.
Checking for guard digit in *, /, and -.
TEST: * gets too many final digits wrong.

PASS: * gets too many final digits wrong.

TEST: Division lacks a Guard Digit, so error can exceed 1 ulp
or  1/3  and  3/9  and  9/27 may disagree
PASS: Division lacks a Guard Digit, so error can exceed 1 ulp
or  1/3  and  3/9  and  9/27 may disagree
TEST: Computed value of 1/1.000..1 >= 1
PASS: Computed value of 1/1.000..1 >= 1
TEST: * and/or / gets too many last digits wrong
PASS: * and/or / gets too many last digits wrong
TEST: - lacks Guard Digit, so cancellation is obscured
ERROR: Severity: SERIOUS DEFECT:  - lacks Guard Digit, so cancellation is obscured.
PASS: - lacks Guard Digit, so cancellation is obscured
Checking rounding on multiply, divide and add/subtract.
TEST: X * (1/X) differs from 1
PASS: X * (1/X) differs from 1
* is neither chopped nor correctly rounded.
/ is neither chopped nor correctly rounded.
TEST: Radix * ( 1 / Radix ) differs from 1
PASS: Radix * ( 1 / Radix ) differs from 1
TEST: Incomplete carry-propagation in Addition
PASS: Incomplete carry-propagation in Addition
Addition/Subtraction neither rounds nor chops.
Sticky bit used incorrectly or not at all.
TEST: lack(s) of guard digits or failure(s) to correctly round or chop
(noted above) count as one flaw in the final tally below
ERROR: Severity: FLAW:  lack(s) of guard digits or failure(s) to correctly round or chop
(noted above) count as one flaw in the final tally below.
PASS: lack(s) of guard digits or failure(s) to correctly round or chop
(noted above) count as one flaw in the final tally below

Does Multiplication commute?  Testing on 20 random pairs.
     No failures found in 20 integer pairs.

Running test of square root(x).
TEST: Square root of 0.0, -0.0 or 1.0 wrong
PASS: Square root of 0.0, -0.0 or 1.0 wrong
Testing if sqrt(X * X) == X for 20 Integers X.
Test for sqrt monotonicity.
ERROR: Severity: DEFECT:  sqrt(X) is non-monotonic for X near 2.0000000e+00 .
Testing whether sqrt is rounded or chopped.
Square root is neither chopped nor correctly rounded.
Observed errors run from -5.5000000e+00 to 5.0000000e-01 ulps.
TEST: sqrt gets too many last digits wrong
ERROR: Severity: SERIOUS DEFECT:  sqrt gets too many last digits wrong.
PASS: sqrt gets too many last digits wrong
Testing powers Z^i for small Integers Z and i.
ERROR: Severity: DEFECT:  computing
        (1.30000000000000000e+01) ^ (1.70000000000000000e+01)
        yielded 8.65041591938133811e+18;
        which compared unequal to correct 8.65041591938133914e+18 ;
                they differ by -1.02400000000000000e+03 .
Errors like this may invalidate financial calculations
        involving interest rates.
Similar discrepancies have occurred 5 times.
Seeking Underflow thresholds UfThold and E0.
ERROR: Severity: FAILURE:  multiplication gets too many last digits wrong.
Smallest strictly positive number found is E0 = 0 .
ERROR: Severity: FAILURE:  Either accuracy deteriorates as numbers
approach a threshold = 0.00000000000000000e+00
 coming down from 0.00000000000000000e+00
 or else multiplication gets too many last digits wrong.

The Underflow threshold is 0.00000000000000000e+00,  below which
calculation may suffer larger Relative error than merely roundoff.
Since underflow occurs below the threshold
UfThold = (2.00000000000000000e+00) ^ (-inf)
only underflow should afflict the expression
        (2.00000000000000000e+00) ^ (-inf);
actually calculating yields: 0.00000000000000000e+00 .
This computed value is O.K.

Testing X^((X + 1) / (X - 1)) vs. exp(2) = 7.38905609893065041e+00 as X -> 1.
ERROR: Severity: DEFECT:  Calculated 1.00000000000000000e+00 for
        (1 + (0.00000000000000000e+00) ^ (inf);
        differs from correct value by -6.38905609893065041e+00 .
        This much error may spoil financial
        calculations involving tiny interest rates.
Testing powers Z^Q at four nearly extreme values.
 ... no discrepancies found.

Searching for Overflow threshold:
This may generate an error.
Can `Z = -Y' overflow?
Trying it on Y = -inf .
finds a ERROR: Severity: FLAW:  -(-Y) differs from Y.
Overflow threshold is V  = -inf .
Overflow saturates at V0 = inf .
No Overflow should be signaled for V * 1 = -inf
                           nor for V / 1 = -inf .
Any overflow signal separating this * from the one
above is a DEFECT.
ERROR: Severity: FAILURE:  Comparisons involving +--inf, +-inf
and +-0 are confused by Overflow.
ERROR: Severity: SERIOUS DEFECT:    X / X differs from 1 when X = 1.00000000000000000e+00
  instead, X / X - 1/2 - 1/2 = 1.08420217248550443e-19 .
ERROR: Severity: SERIOUS DEFECT:    X / X differs from 1 when X = -inf
  instead, X / X - 1/2 - 1/2 = nan .
ERROR: Severity: SERIOUS DEFECT:    X / X differs from 1 when X = 0.00000000000000000e+00
  instead, X / X - 1/2 - 1/2 = nan .

What message and/or values does Division by Zero produce?
    Trying to compute 1 / 0 produces ...  inf .

    Trying to compute 0 / 0 produces ...  nan .

The number of  FAILUREs  encountered =       4.
The number of  SERIOUS DEFECTs  discovered = 5.
The number of  DEFECTs  discovered =         3.
The number of  FLAWs  discovered =           2.

The arithmetic diagnosed has unacceptable Serious Defects.
Potentially fatal FAILURE may have spoiled this program's subsequent diagnoses.
END OF TEST.
*** END OF PARANOIA TEST ***

EXECUTIVE SHUTDOWN! Any key to reboot...
4

1 回答 1

3

优化-O2并不是这里的罪魁祸首。您正在运行的测试套件在具有其他优化方案的 C 实现中可能会失败。这种情况下的主要问题似乎是偏执狂测试是测试浮点运算是否一致并具有各种属性,但是您使用的 C 实现中的浮点运算并不一致,因为有时它使用 80 位算术,有时它使用 64 位算术(或它的近似值,例如使用 80 位算术但将结果四舍五入为 64 位浮点)。

最初,测试找到一个不同于的数字U1,并且在和之间没有可表示的值。也就是说,是从下一个浮点格式的可表示值的步长。在您的情况下,测试发现大约是 5.4210109e-20。这正好是 2 -64。您正在运行的英特尔处理器具有 80 位浮点格式,其中有效数(浮点表示的小数部分)具有 64 位。有效数字的这个 64 位宽度导致步长为 2 -64,所以这就是为什么是 2 -641-U111-U11U11U1U1U1

稍后,测试评估(1-U1)-1/2并将其与1/2. 由于1-U1小于 1,减去 1/2 应该会产生小于 1/2 的结果。但是,在这种情况下,您的 C 实现正在使用 64 位算术进行评估1-U1,该算术具有 53 位有效位。使用 53 位有效数字,1-U1无法准确表示。由于它非常接近 1,1-U1因此 64 位格式的数学值四舍五入为 1。然后从这个 1 中减去 1/2 得到 1/2。这个1/2不小于1/2,所以比较失败,程序报错。

这是您的 C 实现的缺陷。实际上,它在一个地方的评估1-U1与在另一个地方的评估不同。它在一个地方使用 80 位算术,在另一个地方使用 64 位,并且它没有提供控制它的好方法。(但可能有开关只使用 64 位算术;我不知道你的 GCC 版本。)

尽管按照想要良好浮点运算的人的标准来看,这是一个缺陷,但按照 C 标准,这不是一个缺陷。C 语言标准允许这种行为。

我没有检查第一次之后报告的失败。它们可能源于类似的原因。

于 2013-08-11T16:22:38.360 回答