我有两个版本的内核执行相同的任务-填充链接的单元格列表-,两个内核之间的区别是存储粒子位置的数据类型,第一个使用浮点数组来存储位置(由于每个粒子 4 个浮点数到 128 位读/写),第二个使用 vec3f 结构数组来存储位置(一个包含 3 个浮点数的结构)。
使用 nvprof 进行一些测试,我发现第二个内核(使用 vec3f)比第一个内核运行得更快:
Time(%) Time Calls Avg Min Max Name
42.88 37.26s 2 18.63s 23.97us 37.26s adentu_grid_cuda_filling_kernel(int*, int*, int*, float*, int, _vec3f, _vec3f, _vec3i)
11.00 3.93s 2 1.97s 25.00us 3.93s adentu_grid_cuda_filling_kernel(int*, int*, int*, _vec3f*, int, _vec3f, _vec3f, _vec3i)
测试完成尝试使用 256 和 512000 个粒子填充链接单元列表。
我的问题是,这里发生了什么?我认为由于合并的内存,浮点数组应该做更好的内存访问,而不是使用具有未对齐内存的 vec3f 结构数组。我误解了什么?
这些是内核,第一个内核:
__global__ void adentu_grid_cuda_filling_kernel (int *head,
int *linked,
int *cellnAtoms,
float *pos,
int nAtoms,
vec3f origin,
vec3f h,
vec3i nCell)
{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx >= nAtoms)
return;
vec3i cell;
vec3f _pos = (vec3f){(float)pos[idx*4+0], (float)pos[idx*4+1], (float)pos[idx*4+2]};
cell.x = floor ((_pos.x - origin.x)/h.x);
cell.y = floor ((_pos.y - origin.y)/h.y);
cell.z = floor ((_pos.z - origin.z)/h.z);
int c = nCell.x * nCell.y * cell.z + nCell.x * cell.y + cell.x;
int i;
if (atomicCAS (&head[c], -1, idx) != -1){
i = head[c];
while (atomicCAS (&linked[i], -1, idx) != -1)
i = linked[i];
}
atomicAdd (&cellnAtoms[c], 1);
}
这是第二个内核:
__global__ void adentu_grid_cuda_filling_kernel (int *head,
int *linked,
int *cellNAtoms,
vec3f *pos,
int nAtoms,
vec3f origin,
vec3f h,
vec3i nCell)
{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx >= nAtoms)
return;
vec3i cell;
vec3f _pos = pos[idx];
cell.x = floor ((_pos.x - origin.x)/h.x);
cell.y = floor ((_pos.y - origin.y)/h.y);
cell.z = floor ((_pos.z - origin.z)/h.z);
int c = nCell.x * nCell.y * cell.z + nCell.x * cell.y + cell.x;
int i;
if (atomicCAS (&head[c], -1, idx) != -1){
i = head[c];
while (atomicCAS (&linked[i], -1, idx) != -1)
i = linked[i];
}
atomicAdd (&cellNAtoms[c], 1);
}
这是 vec3f 结构:
typedef struct _vec3f {float x, y, z} vec3f;