我有这样的训练数据集:
0.00479616 | 0.0119904 | 0.00483092 | 0.0120773 | 1
0.51213136 | 0.0113404 | 0.02383092 | -0.012073 | 0
0.10479096 | -0.011704 | -0.0453692 | 0.0350773 | 0
前 4 列是一个样本的特征,最后一列是它的输出。
我以这种方式使用 scikit:
data = np.array(data)
lr = linear_model.LogisticRegression(C=10)
X = data[:,:-1]
Y = data[:,-1]
lr.fit(X, Y)
print lr
# The output is always 1 or 0, not a probability number.
print lr.predict(data[0][:-1])
我认为逻辑回归总是应该给出一个介于 0 和 1 之间的概率数。