The signs of the eigenvectors in the eigen
function change depending on the specification of the symmetric
argument. Consider the following example:
set.seed(1234)
data <- matrix(rnorm(200),nrow=100)
cov.matrix <- cov(data)
vectors.1 <- eigen(cov.matrix,symmetric=TRUE)$vectors
vectors.2 <- eigen(cov.matrix,symmetric=FALSE)$vectors
#The second and third eigenvectors have opposite sign
all(vectors.1 == vectors.2)
FALSE
This also has implications for principal component analysis as the princomp
function appears to calculate the eigenvectors for the covariance matrix using the eigen
function with symmetric
set to TRUE
.
pca <- princomp(data)
#princomp uses vectors.1
pca$loadings
Loadings:
Comp.1 Comp.2
[1,] -0.366 -0.931
[2,] 0.931 -0.366
Comp.1 Comp.2
SS loadings 1.0 1.0
Proportion Var 0.5 0.5
Cumulative Var 0.5 1.0
vectors.1
[,1] [,2]
[1,] -0.3659208 -0.9306460
[2,] 0.9306460 -0.3659208
Can someone please explain the source or reasoning behind the discrepancy?