我有一个排序的 CSV 数据集,其中有四列我想用作 MultiIndex,包括两个 DateTime 列:
Alex,Beta,2011-03-01 00:00:00,2011-03-03 00:00:00,A,8,11.4
Alex,Beta,2011-03-03 00:00:00,2011-03-05 00:00:00,B,10,17.2
Alex,Beta,2011-03-05 00:00:00,2011-03-07 00:00:00,A,3,11.4
Alex,Beta,2011-03-07 00:00:00,2011-03-09 00:00:00,B,7,17.2
Alex,Orion,2011-03-02 00:00:00,2011-03-04 00:00:00,A,4,11.4
Alex,Orion,2011-03-03 00:00:00,2011-03-05 00:00:00,B,6,17.2
Alex,Orion,2011-03-04 00:00:00,2011-03-06 00:00:00,A,3,11.4
Alex,Orion,2011-03-05 00:00:00,2011-03-07 00:00:00,B,11,17.2
Alex,ZZYZX,2011-03-02 00:00:00,2011-03-05 00:00:00,A,10,11.4
Alex,ZZYZX,2011-03-04 00:00:00,2011-03-07 00:00:00,A,15,11.4
Alex,ZZYZX,2011-03-06 00:00:00,2011-03-09 00:00:00,B,20,17.2
Alex,ZZYZX,2011-03-08 00:00:00,2011-03-11 00:00:00,B,5,17.2
我可以使用 read_csv 加载它并分层显示 DataFrame。但索引它是另一回事。我能说的最接近的是 pandas 不喜欢在这里使用 DateTime 索引。如果我注释掉 index_col 中的 DateTime 标签以及索引语句 (df.loc) 中的相应条目,它可以正常工作。
有任何想法吗?
#!/usr/bin/env python
import numpy as np
import pandas as pd
pd.set_option('display.height', 400)
pd.set_option('display.width', 400)
pd.set_option('display.max_rows', 1000)
pd.set_option('display.max_columns', 30)
pd.set_option('display.line_width', 200)
try:
df = pd.read_csv(
'./sales.csv',
header = None,
na_values = ['NULL'],
names = [
'salesperson',
'customer',
'invoice_date',
'ship_date',
'product',
'quantity',
'price',
],
index_col = [
'salesperson',
'customer',
'invoice_date',
'ship_date',
],
parse_dates = [
'invoice_date',
'ship_date',
],
)
except Exception as e:
print(e)
try:
print(df)
print(df.loc[(
'Alex', # salesperson
'ZZYZX', # customer
'2011-03-02 00:00:00', # invoice_date
'2011-03-05 00:00:00', # ship_date
)])
except Exception as e:
print(e)