0

我创建了一个名为CSparse. 它的头文件如下。

#ifndef _CSPARSE_H
#define _CSPARSE_H

#include <stdlib.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stddef.h>
#ifdef MATLAB_MEX_FILE
#include "mex.h"
#endif
#define CS_VER 3                    /* CSparse Version */
#define CS_SUBVER 1
#define CS_SUBSUB 2
#define CS_DATE "April 16, 2013"    /* CSparse release date */
#define CS_COPYRIGHT "Copyright (c) Timothy A. Davis, 2006-2013"

#ifdef MATLAB_MEX_FILE
#undef csi
#define csi mwSignedIndex
#endif
#ifndef csi
#define csi ptrdiff_t
#endif

class CSparse
{
public:
    CSparse(void);
    virtual ~CSparse(void);

    /* --- primary CSparse routines and data structures ------------------------- */
    typedef struct csparse     /* matrix in compressed-column or triplet form */
    {
        csi nzmax ;     /* maximum number of entries */
        csi m ;         /* number of rows */
        csi n ;         /* number of columns */
        csi *p ;        /* column pointers (size n+1) or col indices (size nzmax) */
        csi *i ;        /* row indices, size nzmax */
        double *x ;     /* numerical values, size nzmax */
        csi nz ;        /* # of entries in triplet matrix, -1 for compressed-col */
    } cs;

    typedef struct cs_symbolic  /* symbolic Cholesky, LU, or QR analysis */
    {
        csi *pinv ;     /* inverse row perm. for QR, fill red. perm for Chol */
        csi *q ;        /* fill-reducing column permutation for LU and QR */
        csi *parent ;   /* elimination tree for Cholesky and QR */
        csi *cp ;       /* column pointers for Cholesky, row counts for QR */
        csi *leftmost ; /* leftmost[i] = min(find(A(i,:))), for QR */
        csi m2 ;        /* # of rows for QR, after adding fictitious rows */
        double lnz ;    /* # entries in L for LU or Cholesky; in V for QR */
        double unz ;    /* # entries in U for LU; in R for QR */
    } css;

    typedef struct cs_numeric   /* numeric Cholesky, LU, or QR factorization */
    {
        cs *L ;         /* L for LU and Cholesky, V for QR */
        cs *U ;         /* U for LU, R for QR, not used for Cholesky */
        csi *pinv ;     /* partial pivoting for LU */
        double *B ;     /* beta [0..n-1] for QR */
    } csn;

    typedef struct cs_dmperm_results     /* cs_dmperm or cs_scc output */
    {
        csi *p ;        /* size m, row permutation */
        csi *q ;        /* size n, column permutation */
        csi *r ;        /* size nb+1, block k is rows r[k] to r[k+1]-1 in A(p,q) */
        csi *s ;        /* size nb+1, block k is cols s[k] to s[k+1]-1 in A(p,q) */
        csi nb ;        /* # of blocks in fine dmperm decomposition */
        csi rr [5] ;    /* coarse row decomposition */
        csi cc [5] ;    /* coarse column decomposition */
    } csd;

    cs    *cs_add (const cs *A, const cs *B, double alpha, double beta) ;
    csi    cs_cholsol (csi order, const cs *A, double *b) ;
    cs    *cs_compress (const cs *T) ;
    csi    cs_dupl (cs *A) ;
    csi    cs_entry (cs *T, csi i, csi j, double x) ;
    csi    cs_gaxpy (const cs *A, const double *x, double *y) ;
    cs    *cs_load (FILE *f) ;
    csi    cs_lusol (csi order, const cs *A, double *b, double tol) ;
    cs    *cs_multiply (const cs *A, const cs *B) ;
    double cs_norm (const cs *A) ;
    csi    cs_print (const cs *A, csi brief) ;
    csi    cs_qrsol (csi order, const cs *A, double *b) ;
    cs    *cs_transpose (const cs *A, csi values) ;

    /* utilities */
    void  *cs_calloc (csi n, size_t size) ;
    void  *cs_free (void *p) ;
    void  *cs_realloc (void *p, csi n, size_t size, csi *ok) ;
    cs    *cs_spalloc (csi m, csi n, csi nzmax, csi values, csi triplet) ;
    cs    *cs_spfree (cs *A) ;
    csi    cs_sprealloc (cs *A, csi nzmax) ;
    void  *cs_malloc (csi n, size_t size) ;

    /* --- secondary CSparse routines and data structures ----------------------- */    
    csi *cs_amd (csi order, const cs *A) ;
    csn *cs_chol (const cs *A, const css *S) ;
    csd *cs_dmperm (const cs *A, csi seed) ;
    csi  cs_droptol (cs *A, double tol) ;
    csi  cs_dropzeros (cs *A) ;
    csi  cs_happly (const cs *V, csi i, double beta, double *x) ;
    csi  cs_ipvec (const csi *p, const double *b, double *x, csi n) ;
    csi  cs_lsolve (const cs *L, double *x) ;
    csi  cs_ltsolve (const cs *L, double *x) ;
    csn *cs_lu (const cs *A, const css *S, double tol) ;
    cs  *cs_permute (const cs *A, const csi *pinv, const csi *q, csi values) ;
    csi *cs_pinv (const csi *p, csi n) ;
    csi  cs_pvec (const csi *p, const double *b, double *x, csi n) ;
    csn *cs_qr (const cs *A, const css *S) ;
    css *cs_schol (csi order, const cs *A) ;
    css *cs_sqr (csi order, const cs *A, csi qr) ;
    cs  *cs_symperm (const cs *A, const csi *pinv, csi values) ;
    csi  cs_updown (cs *L, csi sigma, const cs *C, const csi *parent) ;
    csi  cs_usolve (const cs *U, double *x) ;
    csi  cs_utsolve (const cs *U, double *x) ;
    /* utilities */
    css *cs_sfree (css *S) ;
    csn *cs_nfree (csn *N) ;
    csd *cs_dfree (csd *D) ;

    /* --- tertiary CSparse routines -------------------------------------------- */
    csi   *cs_counts (const cs *A, const csi *parent, const csi *post, csi ata) ;
    double cs_cumsum (csi *p, csi *c, csi n) ;
    csi    cs_dfs (csi j, cs *G, csi top, csi *xi, csi *pstack, const csi *pinv) ;
    csi    cs_ereach (const cs *A, csi k, const csi *parent, csi *s, csi *w) ;
    csi   *cs_etree (const cs *A, csi ata) ;
    csi    cs_fkeep (cs *A, csi (*fkeep) (csi, csi, double, void *), void *other) ;
    double cs_house (double *x, double *beta, csi n) ;
    csi    cs_leaf (csi i, csi j, const csi *first, csi *maxfirst, csi *prevleaf,
                    csi *ancestor, csi *jleaf) ;
    csi   *cs_maxtrans (const cs *A, csi seed) ;
    csi   *cs_post (const csi *parent, csi n) ;
    csi   *cs_randperm (csi n, csi seed) ;
    csi    cs_reach (cs *G, const cs *B, csi k, csi *xi, const csi *pinv) ;
    csi    cs_scatter (const cs *A, csi j, double beta, csi *w, double *x, csi mark,
                       cs *C, csi nz) ;
    csd   *cs_scc (cs *A) ;
    csi    cs_spsolve (cs *G, const cs *B, csi k, csi *xi, double *x,
        const csi *pinv, csi lo) ;
    csi    cs_tdfs (csi j, csi k, csi *head, const csi *next, csi *post,
                    csi *stack) ;
    /* utilities */
    csd   *cs_dalloc (csi m, csi n) ;
    csd   *cs_ddone (csd *D, cs *C, void *w, csi ok) ;
    cs    *cs_done (cs *C, void *w, void *x, csi ok) ;
    csi   *cs_idone (csi *p, cs *C, void *w, csi ok) ;
    csn   *cs_ndone (csn *N, cs *C, void *w, void *x, csi ok) ;

    #define CS_MAX(a,b) (((a) > (b)) ? (a) : (b))
    #define CS_MIN(a,b) (((a) < (b)) ? (a) : (b))
    #define CS_FLIP(i) (-(i)-2)
    #define CS_UNFLIP(i) (((i) < 0) ? CS_FLIP(i) : (i))
    #define CS_MARKED(w,j) (w [j] < 0)
    #define CS_MARK(w,j) { w [j] = CS_FLIP (w [j]) ; }
    #define CS_CSC(A) (A && (A->nz == -1))
    #define CS_TRIPLET(A) (A && (A->nz >= 0))
};
#endif

部分内容CSparse.cpp如下。

#include "CSparse.h"

CSparse::CSparse(void)
{
}

CSparse::~CSparse(void)
{
}

/* remove duplicate entries from A */
csi CSparse::cs_dupl (cs *A)
{
    csi i, j, p, q, nz = 0, n, m, *Ap, *Ai, *w ;
    double *Ax ;
    if (!CS_CSC (A)) return (0) ;               /* check inputs */
    m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ;
    w = (csi* ) cs_malloc (m, sizeof (csi)) ;           /* get workspace */
    if (!w) return (0) ;                        /* out of memory */
    for (i = 0 ; i < m ; i++) w [i] = -1 ;      /* row i not yet seen */
    for (j = 0 ; j < n ; j++)
    {
        q = nz ;                                /* column j will start at q */
        for (p = Ap [j] ; p < Ap [j+1] ; p++)
        {
            i = Ai [p] ;                        /* A(i,j) is nonzero */
            if (w [i] >= q)
            {
                Ax [w [i]] += Ax [p] ;          /* A(i,j) is a duplicate */
            }
            else
            {
                w [i] = nz ;                    /* record where row i occurs */
                Ai [nz] = i ;                   /* keep A(i,j) */
                Ax [nz++] = Ax [p] ;
            }
        }
        Ap [j] = q ;                            /* record start of column j */
    }
    Ap [n] = nz ;                               /* finalize A */
    cs_free (w) ;                               /* free workspace */
    return (cs_sprealloc (A, 0)) ;              /* remove extra space from A */
}

/* C = A' */
CSparse::cs *CSparse::cs_transpose (const cs *A, csi values)
{
    csi p, q, j, *Cp, *Ci, n, m, *Ap, *Ai, *w ;
    double *Cx, *Ax ;
    cs *C ;
    if (!CS_CSC (A)) return (NULL) ;    /* check inputs */
    m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ;
    C = cs_spalloc (n, m, Ap [n], values && Ax, 0) ;       /* allocate result */
    w = (csi *) cs_calloc (m, sizeof (csi)) ;                      /* get workspace */
    if (!C || !w) return (cs_done (C, w, NULL, 0)) ;       /* out of memory */
    Cp = C->p ; Ci = C->i ; Cx = C->x ;
    for (p = 0 ; p < Ap [n] ; p++) w [Ai [p]]++ ;          /* row counts */
    cs_cumsum (Cp, w, m) ;                                 /* row pointers */
    for (j = 0 ; j < n ; j++)
    {
        for (p = Ap [j] ; p < Ap [j+1] ; p++)
        {
            Ci [q = w [Ai [p]]++] = j ; /* place A(i,j) as entry C(j,i) */
            if (Cx) Cx [q] = Ax [p] ;
        }
    }
    return (cs_done (C, w, NULL, 1)) ;  /* success; free w and return C */
}

我可以使用::. 如何通过 using::而不是创建类的实例来使用类的功能并通过 using 访问这些功能.?哪个更适合调用函数:::.

4

2 回答 2

3

C++ 类中的静态函数使用 :: 访问,访问来自对象实例的函数使用 .

因此,如果您声明: -

class SomeClass
{
    public:
      void Function1();
      static void Function2();
};

然后,您可以调用以下命令:-

SomeClass::Function2(); // called without an instantiated object

或实例化一个对象:-

SomeClass classObj; // create an object
classObj.Function1(); // call the function from an instance of the object

请注意,如果您使用静态方法,则类的成员变量需要是静态的,以便您从函数内部访问它们。

:: 或 . 可以归类为“更好”。这完全取决于您的程序设计和您将使用的类。

于 2013-07-29T10:13:36.500 回答
0

只需将函数标记为类级别函数而不是实例级别。在 C++ 中,只需将其设为静态即可。例如

static css *cs_sfree (css *S) ;

then 
void foo()
{
   css* a = 0;
   css* b = 0;
   a = CSparse::cs_sfree(b);
}

不同之处在于您可以在没有对象的情况下调用静态函数,但不能从中修改对象(不能使用 this 指针)。非静态函数连接到一个对象(通过 this 指针)

于 2013-07-29T10:06:38.317 回答