我正在创建一个新课程。该类声明了一个结构变量 ,cs
该变量用于该类的所有函数中。类中函数的一些返回变量是类型cs *
。下面是 的内容CSparse.h
。
#ifndef _CSPARSE_H
#define _CSPARSE_H
#include <stdlib.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stddef.h>
#ifdef MATLAB_MEX_FILE
#include "mex.h"
#endif
#define CS_VER 3 /* CSparse Version */
#define CS_SUBVER 1
#define CS_SUBSUB 2
#define CS_DATE "April 16, 2013" /* CSparse release date */
#define CS_COPYRIGHT "Copyright (c) Timothy A. Davis, 2006-2013"
#ifdef MATLAB_MEX_FILE
#undef csi
#define csi mwSignedIndex
#endif
#ifndef csi
#define csi ptrdiff_t
#endif
class CSparse
{
public:
CSparse(void);
virtual ~CSparse(void);
/* --- primary CSparse routines and data structures ------------------------- */
typedef struct csparse /* matrix in compressed-column or triplet form */
{
csi nzmax ; /* maximum number of entries */
csi m ; /* number of rows */
csi n ; /* number of columns */
csi *p ; /* column pointers (size n+1) or col indices (size nzmax) */
csi *i ; /* row indices, size nzmax */
double *x ; /* numerical values, size nzmax */
csi nz ; /* # of entries in triplet matrix, -1 for compressed-col */
} cs;
cs *cs_add (const cs *A, const cs *B, double alpha, double beta) ;
csi cs_cholsol (csi order, const cs *A, double *b) ;
cs *cs_compress (const cs *T) ;
csi cs_dupl (cs *A) ;
csi cs_entry (cs *T, csi i, csi j, double x) ;
csi cs_gaxpy (const cs *A, const double *x, double *y) ;
cs *cs_load (FILE *f) ;
csi cs_lusol (csi order, const cs *A, double *b, double tol) ;
cs *cs_multiply (const cs *A, const cs *B) ;
double cs_norm (const cs *A) ;
csi cs_print (const cs *A, csi brief) ;
csi cs_qrsol (csi order, const cs *A, double *b) ;
cs *cs_transpose (const cs *A, csi values) ;
/* utilities */
void *cs_calloc (csi n, size_t size) ;
void *cs_free (void *p) ;
void *cs_realloc (void *p, csi n, size_t size, csi *ok) ;
cs *cs_spalloc (csi m, csi n, csi nzmax, csi values, csi triplet) ;
cs *cs_spfree (cs *A) ;
csi cs_sprealloc (cs *A, csi nzmax) ;
void *cs_malloc (csi n, size_t size) ;
private:
/* --- secondary CSparse routines and data structures ----------------------- */
typedef struct cs_symbolic /* symbolic Cholesky, LU, or QR analysis */
{
csi *pinv ; /* inverse row perm. for QR, fill red. perm for Chol */
csi *q ; /* fill-reducing column permutation for LU and QR */
csi *parent ; /* elimination tree for Cholesky and QR */
csi *cp ; /* column pointers for Cholesky, row counts for QR */
csi *leftmost ; /* leftmost[i] = min(find(A(i,:))), for QR */
csi m2 ; /* # of rows for QR, after adding fictitious rows */
double lnz ; /* # entries in L for LU or Cholesky; in V for QR */
double unz ; /* # entries in U for LU; in R for QR */
} css;
typedef struct cs_numeric /* numeric Cholesky, LU, or QR factorization */
{
cs *L ; /* L for LU and Cholesky, V for QR */
cs *U ; /* U for LU, R for QR, not used for Cholesky */
csi *pinv ; /* partial pivoting for LU */
double *B ; /* beta [0..n-1] for QR */
} csn;
typedef struct cs_dmperm /* cs_dmperm or cs_scc output */
{
csi *p ; /* size m, row permutation */
csi *q ; /* size n, column permutation */
csi *r ; /* size nb+1, block k is rows r[k] to r[k+1]-1 in A(p,q) */
csi *s ; /* size nb+1, block k is cols s[k] to s[k+1]-1 in A(p,q) */
csi nb ; /* # of blocks in fine dmperm decomposition */
csi rr [5] ; /* coarse row decomposition */
csi cc [5] ; /* coarse column decomposition */
} csd;
csi *cs_amd (csi order, const cs *A) ;
csn *cs_chol (const cs *A, const css *S) ;
csd *cs_dmperm (const cs *A, csi seed) ;
csi cs_droptol (cs *A, double tol) ;
csi cs_dropzeros (cs *A) ;
csi cs_happly (const cs *V, csi i, double beta, double *x) ;
csi cs_ipvec (const csi *p, const double *b, double *x, csi n) ;
csi cs_lsolve (const cs *L, double *x) ;
csi cs_ltsolve (const cs *L, double *x) ;
csn *cs_lu (const cs *A, const css *S, double tol) ;
cs *cs_permute (const cs *A, const csi *pinv, const csi *q, csi values) ;
csi *cs_pinv (const csi *p, csi n) ;
csi cs_pvec (const csi *p, const double *b, double *x, csi n) ;
csn *cs_qr (const cs *A, const css *S) ;
css *cs_schol (csi order, const cs *A) ;
css *cs_sqr (csi order, const cs *A, csi qr) ;
cs *cs_symperm (const cs *A, const csi *pinv, csi values) ;
csi cs_updown (cs *L, csi sigma, const cs *C, const csi *parent) ;
csi cs_usolve (const cs *U, double *x) ;
csi cs_utsolve (const cs *U, double *x) ;
/* utilities */
css *cs_sfree (css *S) ;
csn *cs_nfree (csn *N) ;
csd *cs_dfree (csd *D) ;
/* --- tertiary CSparse routines -------------------------------------------- */
csi *cs_counts (const cs *A, const csi *parent, const csi *post, csi ata) ;
double cs_cumsum (csi *p, csi *c, csi n) ;
csi cs_dfs (csi j, cs *G, csi top, csi *xi, csi *pstack, const csi *pinv) ;
csi cs_ereach (const cs *A, csi k, const csi *parent, csi *s, csi *w) ;
csi *cs_etree (const cs *A, csi ata) ;
csi cs_fkeep (cs *A, csi (*fkeep) (csi, csi, double, void *), void *other) ;
double cs_house (double *x, double *beta, csi n) ;
csi cs_leaf (csi i, csi j, const csi *first, csi *maxfirst, csi *prevleaf,
csi *ancestor, csi *jleaf) ;
csi *cs_maxtrans (const cs *A, csi seed) ;
csi *cs_post (const csi *parent, csi n) ;
csi *cs_randperm (csi n, csi seed) ;
csi cs_reach (cs *G, const cs *B, csi k, csi *xi, const csi *pinv) ;
csi cs_scatter (const cs *A, csi j, double beta, csi *w, double *x, csi mark,
cs *C, csi nz) ;
csd *cs_scc (cs *A) ;
csi cs_spsolve (cs *G, const cs *B, csi k, csi *xi, double *x,
const csi *pinv, csi lo) ;
csi cs_tdfs (csi j, csi k, csi *head, const csi *next, csi *post,
csi *stack) ;
/* utilities */
csd *cs_dalloc (csi m, csi n) ;
csd *cs_ddone (csd *D, cs *C, void *w, csi ok) ;
cs *cs_done (cs *C, void *w, void *x, csi ok) ;
csi *cs_idone (csi *p, cs *C, void *w, csi ok) ;
csn *cs_ndone (csn *N, cs *C, void *w, void *x, csi ok) ;
#define CS_MAX(a,b) (((a) > (b)) ? (a) : (b))
#define CS_MIN(a,b) (((a) < (b)) ? (a) : (b))
#define CS_FLIP(i) (-(i)-2)
#define CS_UNFLIP(i) (((i) < 0) ? CS_FLIP(i) : (i))
#define CS_MARKED(w,j) (w [j] < 0)
#define CS_MARK(w,j) { w [j] = CS_FLIP (w [j]) ; }
#define CS_CSC(A) (A && (A->nz == -1))
#define CS_TRIPLET(A) (A && (A->nz >= 0))
};
#endif
这里是内容CSparse.cpp
#include "CSparse.h"
CSparse::CSparse(void)
{
}
CSparse::~CSparse(void)
{
}
/* remove duplicate entries from A */
csi CSparse::cs_dupl (cs *A)
{
csi i, j, p, q, nz = 0, n, m, *Ap, *Ai, *w ;
double *Ax ;
if (!CS_CSC (A)) return (0) ; /* check inputs */
m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ;
w = (csi* ) cs_malloc (m, sizeof (csi)) ; /* get workspace */
if (!w) return (0) ; /* out of memory */
for (i = 0 ; i < m ; i++) w [i] = -1 ; /* row i not yet seen */
for (j = 0 ; j < n ; j++)
{
q = nz ; /* column j will start at q */
for (p = Ap [j] ; p < Ap [j+1] ; p++)
{
i = Ai [p] ; /* A(i,j) is nonzero */
if (w [i] >= q)
{
Ax [w [i]] += Ax [p] ; /* A(i,j) is a duplicate */
}
else
{
w [i] = nz ; /* record where row i occurs */
Ai [nz] = i ; /* keep A(i,j) */
Ax [nz++] = Ax [p] ;
}
}
Ap [j] = q ; /* record start of column j */
}
Ap [n] = nz ; /* finalize A */
cs_free (w) ; /* free workspace */
return (cs_sprealloc (A, 0)) ; /* remove extra space from A */
}
/* C = A' */
cs* CSparse::cs_transpose (const cs *A, csi values) // THIS IS THE LINE WHERE THE FIRST ERROR APPREARS.
{
csi p, q, j, *Cp, *Ci, n, m, *Ap, *Ai, *w ;
double *Cx, *Ax ;
cs *C ;
if (!CS_CSC (A)) return (NULL) ; /* check inputs */
m = A->m ; n = A->n ; Ap = A->p ; Ai = A->i ; Ax = A->x ;
C = cs_spalloc (n, m, Ap [n], values && Ax, 0) ; /* allocate result */
w = (csi *) cs_calloc (m, sizeof (csi)) ; /* get workspace */
if (!C || !w) return (cs_done (C, w, NULL, 0)) ; /* out of memory */
Cp = C->p ; Ci = C->i ; Cx = C->x ;
for (p = 0 ; p < Ap [n] ; p++) w [Ai [p]]++ ; /* row counts */
cs_cumsum (Cp, w, m) ; /* row pointers */
for (j = 0 ; j < n ; j++)
{
for (p = Ap [j] ; p < Ap [j+1] ; p++)
{
Ci [q = w [Ai [p]]++] = j ; /* place A(i,j) as entry C(j,i) */
if (Cx) Cx [q] = Ax [p] ;
}
}
return (cs_done (C, w, NULL, 1)) ; /* success; free w and return C */
}
/* C = compressed-column form of a triplet matrix T */
cs *CSparse::cs_compress (const cs *T)
{
csi m, n, nz, p, k, *Cp, *Ci, *w, *Ti, *Tj ;
double *Cx, *Tx ;
cs *C ;
if (!CS_TRIPLET (T)) return (NULL) ; /* check inputs */
m = T->m ; n = T->n ; Ti = T->i ; Tj = T->p ; Tx = T->x ; nz = T->nz ;
C = cs_spalloc (m, n, nz, Tx != NULL, 0) ; /* allocate result */
w = (csi *) cs_calloc (n, sizeof (csi)) ; /* get workspace */
if (!C || !w) return (cs_done (C, w, NULL, 0)) ; /* out of memory */
Cp = C->p ; Ci = C->i ; Cx = C->x ;
for (k = 0 ; k < nz ; k++) w [Tj [k]]++ ; /* column counts */
cs_cumsum (Cp, w, n) ; /* column pointers */
for (k = 0 ; k < nz ; k++)
{
Ci [p = w [Tj [k]]++] = Ti [k] ; /* A(i,j) is the pth entry in C */
if (Cx) Cx [p] = Tx [k] ;
}
return (cs_done (C, w, NULL, 1)) ; /* success; free w and return C */
}
/* allocate a sparse matrix (triplet form or compressed-column form) */
cs *CSparse::cs_spalloc (csi m, csi n, csi nzmax, csi values, csi triplet)
{
cs *A = (cs *) cs_calloc (1, sizeof (cs)) ; /* allocate the cs struct */
if (!A) return (NULL) ; /* out of memory */
A->m = m ; /* define dimensions and nzmax */
A->n = n ;
A->nzmax = nzmax = CS_MAX (nzmax, 1) ;
A->nz = triplet ? 0 : -1 ; /* allocate triplet or comp.col */
A->p = (csi *) cs_malloc (triplet ? nzmax : n+1, sizeof (csi)) ;
A->i = (csi *) cs_malloc (nzmax, sizeof (csi)) ;
A->x = values ? (double *) cs_malloc (nzmax, sizeof (double)) : NULL ;
return ((!A->p || !A->i || (values && !A->x)) ? cs_spfree (A) : A) ;
}
/* change the max # of entries sparse matrix */
csi CSparse::cs_sprealloc (cs *A, csi nzmax)
{
csi ok, oki, okj = 1, okx = 1 ;
if (!A) return (0) ;
if (nzmax <= 0) nzmax = (CS_CSC (A)) ? (A->p [A->n]) : A->nz ;
A->i = (csi *) cs_realloc (A->i, nzmax, sizeof (csi), &oki) ;
if (CS_TRIPLET (A)) A->p = (csi *) cs_realloc (A->p, nzmax, sizeof (csi), &okj) ;
if (A->x) A->x = (double *) cs_realloc (A->x, nzmax, sizeof (double), &okx) ;
ok = (oki && okj && okx) ;
if (ok) A->nzmax = nzmax ;
return (ok) ;
}
/* free a sparse matrix */
cs *CSparse::cs_spfree (cs *A)
{
if (!A) return (NULL) ; /* do nothing if A already NULL */
cs_free (A->p) ;
cs_free (A->i) ;
cs_free (A->x) ;
return ((cs *) cs_free (A)) ; /* free the cs struct and return NULL */
}
/* free a numeric factorization */
csn *CSparse::cs_nfree (csn *N)
{
if (!N) return (NULL) ; /* do nothing if N already NULL */
cs_spfree (N->L) ;
cs_spfree (N->U) ;
cs_free (N->pinv) ;
cs_free (N->B) ;
return ((csn *) cs_free (N)) ; /* free the csn struct and return NULL */
}
/* free a symbolic factorization */
css *CSparse::cs_sfree (css *S)
{
if (!S) return (NULL) ; /* do nothing if S already NULL */
cs_free (S->pinv) ;
cs_free (S->q) ;
cs_free (S->parent) ;
cs_free (S->cp) ;
cs_free (S->leftmost) ;
return ((css *) cs_free (S)) ; /* free the css struct and return NULL */
}
/* allocate a cs_dmperm or cs_scc result */
csd *CSparse::cs_dalloc (csi m, csi n)
{
csd *D ;
D = (csd *) cs_calloc (1, sizeof (csd)) ;
if (!D) return (NULL) ;
D->p = (csi *) cs_malloc (m, sizeof (csi)) ;
D->r = (csi *) cs_malloc (m+6, sizeof (csi)) ;
D->q = (csi *) cs_malloc (n, sizeof (csi)) ;
D->s = (csi *) cs_malloc (n+6, sizeof (csi)) ;
return ((!D->p || !D->r || !D->q || !D->s) ? cs_dfree (D) : D) ;
}
/* free a cs_dmperm or cs_scc result */
csd *CSparse::cs_dfree (csd *D)
{
if (!D) return (NULL) ; /* do nothing if D already NULL */
cs_free (D->p) ;
cs_free (D->q) ;
cs_free (D->r) ;
cs_free (D->s) ;
return ((csd *) cs_free (D)) ; /* free the csd struct and return NULL */
}
/* free workspace and return a sparse matrix result */
cs *CSparse::cs_done (cs *C, void *w, void *x, csi ok)
{
cs_free (w) ; /* free workspace */
cs_free (x) ;
return (ok ? C : cs_spfree (C)) ; /* return result if OK, else free it */
}
/* free workspace and return csi array result */
csi *CSparse::cs_idone (csi *p, cs *C, void *w, csi ok)
{
cs_spfree (C) ; /* free temporary matrix */
cs_free (w) ; /* free workspace */
return (ok ? p : (csi *) cs_free (p)) ; /* return result, or free it */
}
/* free workspace and return a numeric factorization (Cholesky, LU, or QR) */
csn *CSparse::cs_ndone (csn *N, cs *C, void *w, void *x, csi ok)
{
cs_spfree (C) ; /* free temporary matrix */
cs_free (w) ; /* free workspace */
cs_free (x) ;
return (ok ? N : cs_nfree (N)) ; /* return result if OK, else free it */
}
/* free workspace and return a csd result */
csd *CSparse::cs_ddone (csd *D, cs *C, void *w, csi ok)
{
cs_spfree (C) ; /* free temporary matrix */
cs_free (w) ; /* free workspace */
return (ok ? D : cs_dfree (D)) ; /* return result if OK, else free it */
}
/* wrapper for malloc */
void *CSparse::cs_malloc (csi n, size_t size)
{
return (malloc (CS_MAX (n,1) * size)) ;
}
/* wrapper for calloc */
void *CSparse::cs_calloc (csi n, size_t size)
{
return (calloc (CS_MAX (n,1), size)) ;
}
/* wrapper for free */
void *CSparse::cs_free (void *p)
{
if (p) free (p) ; /* free p if it is not already NULL */
return (NULL) ; /* return NULL to simplify the use of cs_free */
}
/* wrapper for realloc */
void *CSparse::cs_realloc (void *p, csi n, size_t size, csi *ok)
{
void *pnew ;
pnew = realloc (p, CS_MAX (n,1) * size) ; /* realloc the block */
*ok = (pnew != NULL) ; /* realloc fails if pnew is NULL */
return ((*ok) ? pnew : p) ; /* return original p if failure */
}
/* p [0..n] = cumulative sum of c [0..n-1], and then copy p [0..n-1] into c */
double CSparse::cs_cumsum (csi *p, csi *c, csi n)
{
csi i, nz = 0 ;
double nz2 = 0 ;
if (!p || !c) return (-1) ; /* check inputs */
for (i = 0 ; i < n ; i++)
{
p [i] = nz ;
nz += c [i] ;
nz2 += c [i] ; /* also in double to avoid csi overflow */
c [i] = p [i] ; /* also copy p[0..n-1] back into c[0..n-1]*/
}
p [n] = nz ;
return (nz2) ; /* return sum (c [0..n-1]) */
}
/* C = alpha*A + beta*B */
cs *CSparse::cs_add (const cs *A, const cs *B, double alpha, double beta)
{
csi p, j, nz = 0, anz, *Cp, *Ci, *Bp, m, n, bnz, *w, values ;
double *x, *Bx, *Cx ;
cs *C ;
if (!CS_CSC (A) || !CS_CSC (B)) return (NULL) ; /* check inputs */
if (A->m != B->m || A->n != B->n) return (NULL) ;
m = A->m ; anz = A->p [A->n] ;
n = B->n ; Bp = B->p ; Bx = B->x ; bnz = Bp [n] ;
w = (csi *) cs_calloc (m, sizeof (csi)) ; /* get workspace */
values = (A->x != NULL) && (Bx != NULL) ;
x = values ? (double *) cs_malloc (m, sizeof (double)) : NULL ; /* get workspace */
C = cs_spalloc (m, n, anz + bnz, values, 0) ; /* allocate result*/
if (!C || !w || (values && !x)) return (cs_done (C, w, x, 0)) ;
Cp = C->p ; Ci = C->i ; Cx = C->x ;
for (j = 0 ; j < n ; j++)
{
Cp [j] = nz ; /* column j of C starts here */
nz = cs_scatter (A, j, alpha, w, x, j+1, C, nz) ; /* alpha*A(:,j)*/
nz = cs_scatter (B, j, beta, w, x, j+1, C, nz) ; /* beta*B(:,j) */
if (values) for (p = Cp [j] ; p < nz ; p++) Cx [p] = x [Ci [p]] ;
}
Cp [n] = nz ; /* finalize the last column of C */
cs_sprealloc (C, 0) ; /* remove extra space from C */
return (cs_done (C, w, x, 1)) ; /* success; free workspace, return C */
}
我得到的第一个错误如下。
1>.\CSparse.cpp(46) : error C2143: syntax error : missing ';' before '*'
我已经在上面的源代码中标记了错误位置。它发生在 的定义中cs* CSparse::cs_transpose (const cs *A, csi values)
。
上网查了一下,发现是这个范围的问题typedef
。因此,我不得不调整CSparse.cpp
. 例如,我改变了
cs* CSparse::cs_transpose (const cs *A, csi values)
至
CSparse::cs* CSparse::cs_transpose (const cs *A, csi values)
它工作得很好。有没有更好的方法来做到这一点?为什么这个问题是针对函数的返回变量和函数参数不会造成任何问题。例如,在函数cs_transpose
中,A
函数返回变量是类型cs
,但只有函数返回会导致编译器抱怨。另外,由于某些原因,我无法使用using namespace
.
有人可以帮我找到解决这个问题的正确方法吗?