35

我应该如何在测试台中创建时钟?我已经找到了一个答案,但是堆栈溢出的其他人建议有替代或更好的方法来实现这一点:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY test_tb IS 
END test_tb;

ARCHITECTURE behavior OF test_tb IS

    COMPONENT test
        PORT(clk : IN std_logic;)
    END COMPONENT;

   signal clk : std_logic := '0';
   constant clk_period : time := 1 ns;

BEGIN

   uut: test PORT MAP (clk => clk);       

   -- Clock process definitions( clock with 50% duty cycle is generated here.
   clk_process :process
   begin
        clk <= '0';
        wait for clk_period/2;  --for 0.5 ns signal is '0'.
        clk <= '1';
        wait for clk_period/2;  --for next 0.5 ns signal is '1'.
   end process;

END;

(来源在这里

4

4 回答 4

37

我最喜欢的技术:

signal clk : std_logic := '0'; -- make sure you initialise!
...
clk <= not clk after half_period;

我通常用一个finished信号来扩展它,让我停止时钟:

clk <= not clk after half_period when finished /= '1' else '0';

如果您使用某个std_logic项目作为您的finished信号,则可以从您的测试环境中的所有项目驱动:

signal finished : std_logic;

....
stimulus_process:process
begin
   finished <= '0';
   drive_various_signals_sync_with_clk;
   finished <= '1';
end process;

monitor_process:process
begin
   finished <= '0';
   check_all_signals_until_all_tests_complete;
   finished <= '1';
end process;

half_period陷阱警报:如果您从另一个常数除以 2 进行计算,则需要小心。模拟器有一个“时间分辨率”设置,通常默认为纳秒......在这种情况下,5 ns / 2结果就是2 ns这样,你最终会得到4ns的周期!将模拟器设置为皮秒,一切都会好起来的(直到你需要一小部分皮秒来表示你的时钟时间!)

于 2013-07-28T20:13:17.610 回答
23

如果以不同的频率生成多个时钟,则如果将一个过程称为并发过程调用,则可以简化时钟生成。Martin Thompson 提到的时间分辨率问题可以通过在程序中使用不同的高低时间来稍微缓解。带有时钟生成程序的测试台是:

library ieee;
use ieee.std_logic_1164.all;

entity tb is
end entity;

architecture sim of tb is

  -- Procedure for clock generation
  procedure clk_gen(signal clk : out std_logic; constant FREQ : real) is
    constant PERIOD    : time := 1 sec / FREQ;        -- Full period
    constant HIGH_TIME : time := PERIOD / 2;          -- High time
    constant LOW_TIME  : time := PERIOD - HIGH_TIME;  -- Low time; always >= HIGH_TIME
  begin
    -- Check the arguments
    assert (HIGH_TIME /= 0 fs) report "clk_plain: High time is zero; time resolution to large for frequency" severity FAILURE;
    -- Generate a clock cycle
    loop
      clk <= '1';
      wait for HIGH_TIME;
      clk <= '0';
      wait for LOW_TIME;
    end loop;
  end procedure;

  -- Clock frequency and signal
  signal clk_166 : std_logic;
  signal clk_125 : std_logic;

begin

  -- Clock generation with concurrent procedure call
  clk_gen(clk_166, 166.667E6);  -- 166.667 MHz clock
  clk_gen(clk_125, 125.000E6);  -- 125.000 MHz clock

  -- Time resolution show
  assert FALSE report "Time resolution: " & time'image(time'succ(0 fs)) severity NOTE;

end architecture;

时间分辨率打印在终端上以供参考,使用测试台中的最后一个并发断言。

如果将clk_gen程序放在单独的包中,那么从测试台到测试台的重用就变得很简单了。

时钟波形如下图所示。

clk_166 和 clk_125 的波形

在该过程中还可以创建更高级的时钟发生器,它可以随时间调整周期以匹配请求的频率,尽管时间分辨率有限制。这显示在这里:

-- Advanced procedure for clock generation, with period adjust to match frequency over time, and run control by signal
procedure clk_gen(signal clk : out std_logic; constant FREQ : real; PHASE : time := 0 fs; signal run : std_logic) is
  constant HIGH_TIME   : time := 0.5 sec / FREQ;  -- High time as fixed value
  variable low_time_v  : time;                    -- Low time calculated per cycle; always >= HIGH_TIME
  variable cycles_v    : real := 0.0;             -- Number of cycles
  variable freq_time_v : time := 0 fs;            -- Time used for generation of cycles
begin
  -- Check the arguments
  assert (HIGH_TIME /= 0 fs) report "clk_gen: High time is zero; time resolution to large for frequency" severity FAILURE;
  -- Initial phase shift
  clk <= '0';
  wait for PHASE;
  -- Generate cycles
  loop
    -- Only high pulse if run is '1' or 'H'
    if (run = '1') or (run = 'H') then
      clk <= run;
    end if;
    wait for HIGH_TIME;
    -- Low part of cycle
    clk <= '0';
    low_time_v := 1 sec * ((cycles_v + 1.0) / FREQ) - freq_time_v - HIGH_TIME;  -- + 1.0 for cycle after current
    wait for low_time_v;
    -- Cycle counter and time passed update
    cycles_v := cycles_v + 1.0;
    freq_time_v := freq_time_v + HIGH_TIME + low_time_v;
  end loop;
end procedure;

再次通过包重用会很好。

于 2013-07-29T12:49:53.123 回答
13

并发信号分配:

library ieee;
use ieee.std_logic_1164.all;

entity foo is
end;
architecture behave of foo is
    signal clk: std_logic := '0';
begin
CLOCK:
clk <=  '1' after 0.5 ns when clk = '0' else
        '0' after 0.5 ns when clk = '1';
end;

ghdl -a foo.vhdl
ghdl -r foo --stop-time=10ns --wave=foo.ghw
ghdl:info: 模拟由 --stop-time
gtkwave foo.ghw 停止

在此处输入图像描述

模拟器模拟流程,并将其转换为与您的流程声明等效的流程。模拟时间意味着在为敏感性条款或敏感性列表驱动事件时使用等待或之后。

于 2013-07-28T06:11:06.277 回答
1

如何使用时钟并进行断言

此示例说明如何生成时钟,并为每个周期提供输入和断言输出。这里测试了一个简单的计数器。

关键思想是process模块并行运行,因此时钟与输入和断言并行生成。

library ieee;
use ieee.std_logic_1164.all;

entity counter_tb is
end counter_tb;

architecture behav of counter_tb is
    constant width : natural := 2;
    constant clk_period : time := 1 ns;

    signal clk : std_logic := '0';
    signal data : std_logic_vector(width-1 downto 0);
    signal count : std_logic_vector(width-1 downto 0);

    type io_t is record
        load : std_logic;
        data : std_logic_vector(width-1 downto 0);
        count : std_logic_vector(width-1 downto 0);
    end record;
    type ios_t is array (natural range <>) of io_t;
    constant ios : ios_t := (
        ('1', "00", "00"),
        ('0', "UU", "01"),
        ('0', "UU", "10"),
        ('0', "UU", "11"),

        ('1', "10", "10"),
        ('0', "UU", "11"),
        ('0', "UU", "00"),
        ('0', "UU", "01")
    );
begin
    counter_0: entity work.counter port map (clk, load, data, count);

    process
    begin
        for i in ios'range loop
            load <= ios(i).load;
            data <= ios(i).data;
            wait until falling_edge(clk);
            assert count = ios(i).count;
        end loop;
        wait;
    end process;

    process
    begin
        for i in 1 to 2 * ios'length loop
            wait for clk_period / 2;
            clk <= not clk;
        end loop;
        wait;
    end process;
end behav;

计数器看起来像这样:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all; -- unsigned

entity counter is
    generic (
        width : in natural := 2
    );
    port (
        clk, load : in std_logic;
        data : in std_logic_vector(width-1 downto 0);
        count : out std_logic_vector(width-1 downto 0)
    );
end entity counter;

architecture rtl of counter is
    signal cnt : unsigned(width-1 downto 0);
begin
    process(clk) is
    begin
        if rising_edge(clk) then
            if load = '1' then
                cnt <= unsigned(data);
            else
                cnt <= cnt + 1;
            end if;
        end if;
    end process;
    count <= std_logic_vector(cnt);
end architecture rtl;

相关:https ://electronics.stackexchange.com/questions/148320/proper-clock-generation-for-vhdl-testbenches

于 2016-06-21T10:23:25.987 回答