I wrote a program which is supposed to behave like a for while loop, printing a string of text a certain number of times.
Here is the code:
global _start
section .data
msg db "Hello World!",10 ; define the message
msgl equ $ - msg ; define message length
; use minimal size of storage space
imax dd 0x00001000 ; defines imax to be big!
section .text
_start:
mov r8, 0x10 ; <s> put imax in r8d, this will be our 'i' </s>
; just attempt 10 iterations
_loop_entry: ; loop entry point
mov eax, 4 ; setup the message to print
mov ebx, 1 ; write, stdout, message, length
mov ecx, msg
mov edx, msgl
int 0x80 ; print message
; this is valid because registers do not change
dec r8 ; decrease i and jump on not zero
cmp r8,1 ; compare values to jump
jnz _loop_entry
mov rax, 1 ; exit with zero
mov rbx, 0
int 0x80
The problem I have is the program runs into an infinite loop. I ran it inside gdb and the cause is:
int 0x80 is called to print the message, and this works correctly, however after the interrupt finishes, the contents of r8 is set to zero, rather than the value it should be. r8 is where the counter sits, counting (down) the number of times the string is printed.
Does int 0x80 modify register values? I noticed that rax, rbx, rcx, rdx were not affected in the same way.
Test Results
Answer: YES! It does modify r8.
I have changed two things in my program. Firstly I now cmp r8, 0
, to get Hello World! the correct number of times, and
I have added
mov [i], r8 ; put away i
After _loop_entry:
and also I have added
mov r8, [i] ; get i back
after the first int 0x80
.
Here is my now working program. More info to come on performance against C++.
;
; main.asm
;
;
; To be used with main.asm, as a test to see if optimized c++
; code can be beaten by me, writing a for / while loop myself.
;
;
; Absolute minimum code to be competative with asm.
global _start
section .data
msg db "Hello World!",10 ; define the message
msgl equ $ - msg ; define message length
; use minimal size of storage space
imax dd 0x00001000 ; defines imax to be big!
i dd 0x0 ; defines i
section .text
_start:
mov r8, 0x10 ; put imax in r8d, this will be our 'i'
_loop_entry: ; loop entry point
mov [i], r8 ; put away i
mov eax, 4 ; setup the message to print
mov ebx, 1 ; write, stdout, message, length
mov ecx, msg
mov edx, msgl
int 0x80 ; print message
; this is valid because registers do not change
mov r8, [i] ; get i back
dec r8 ; decrease i and jump on not zero
cmp r8,0 ; compare values to jump
jnz _loop_entry
mov rax, 1 ; exit with zero
mov rbx, 0
int 0x80