我有一张桌子,这是开始:
WE1_counts WE2_counts M1_counts M2_counts M3_counts
YAL008W 465 291 911 926 946
YBR255W 1040 1357 1428 1304 1112
YGR131W 95 170 230 113 138
YNL003ßC 1800 3107 3979 3012 2899
YBR135W 1094 2143 936 860 561
目标是找到条件“W”和“M”之间的差异表达基因。这是我的代码:
source("http://bioconductor.org/biocLite.R")
biocLite("DESeq")
library("locfit")
library("lattice")
library("DESeq")
condition= c("W", "W", "M", "M", "M")
#data = table given above
cds1 = newCountDataSet(data, condition)
#Normalization
cds1=estimateSizeFactors(cds1)
sizeFactors(cds1)
head( counts( cds1, normalized=TRUE ) )
#Estimate dispersion
cds1 = estimateDispersions( cds1 )
dev.new()
plotDispEsts( cds1 )
head( fData(cds1) )
# Plotting mean vs log2FoldChange
res = nbinomTest( cds1, "W", "M")
dev.new()
plotMA(res)
我的问题是:nbinomTest() 函数返回基于 10% FDR 的差异表达基因。有没有办法改变这个数字?我可以在例如 5% FDR 时检查差异表达的基因吗?