我有一些纸浆代码,它解决了我的背包问题。
prob = LpProblem("Knapsack problem", LpMaximize)
x1 = LpVariable("x1", 0, 12, 'Integer')
x2 = LpVariable("x2", 0, 12, 'Integer')
x3 = LpVariable("x3", 0, 12, 'Integer')
x4 = LpVariable("x4", 0, 12, 'Integer')
x5 = LpVariable("x5", 0, 12, 'Integer')
x6 = LpVariable("x6", 0, 12, 'Integer')
x7 = LpVariable("x7", 0, 12, 'Integer')
x8 = LpVariable("x8", 0, 12, 'Integer')
x9 = LpVariable("x9", 0, 12, 'Integer')
x10 = LpVariable("x10", 0, 12, 'Integer')
x11 = LpVariable("x11", 0, 12, 'Integer')
x12 = LpVariable("x12", 0, 12, 'Integer')
x13 = LpVariable("x13", 0, 12, 'Integer')
x14 = LpVariable("x14", 0, 12, 'Integer')
x15 = LpVariable("x15", 0, 12, 'Integer')
x16 = LpVariable("x16", 0, 12, 'Integer')
x17 = LpVariable("x17", 0, 12, 'Integer')
x18 = LpVariable("x18", 0, 12, 'Integer')
x19 = LpVariable("x19", 0, 12, 'Integer')
x20 = LpVariable("x20", 0, 12, 'Integer')
x21 = LpVariable("x21", 0, 12, 'Integer')
x22 = LpVariable("x22", 0, 12, 'Integer')
x23 = LpVariable("x23", 0, 12, 'Integer')
x24 = LpVariable("x24", 0, 12, 'Integer')
x25 = LpVariable("x25", 0, 12, 'Integer')
prob += 15 * x1 + 18 * x2 + 18 * x3 + 23 * x4 + 18 * x5 + 20 * x6 + 15 * x7 + 16 * x8 + 12 * x9 + 12 * x10 + 25 * x11 + 25 * x12 + 28 * x13 + 35 * x14 + 28 * x15 + 28 * x16 + 25 * x17 + 25 * x18 + 25 * x19 + 28 * x20 + 25 * x21 + 32 * x22 + 32 * x23 + 28 * x24 + 25 * x25, "obj"
prob += 150 * x1 + 180 * x2 + 180 * x3 + 230 * x4 + 180 * x5 + 200 * x6 + 150 * x7 + 160 * x8 + 120 * x9 + 120 * x10 + 250 * x11 + 250 * x12 + 280 * x13 + 350 * x14 + 280 * x15 + 280 * x16 + 250 * x17 + 250 * x18 + 250 * x19 + 280 * x20 + 250 * x21 + 320 * x22 + 320 * x23 + 280 * x24 + 250 * x25 == 6600, "c1"
prob.solve()
print "Status:", LpStatus[prob.status]
for v in prob.variables():
print v.name, "=", v.varValue
print ("objective = %s" % value(prob.objective))
但是对于这段代码,我需要附加另一个限制:例如,非零的数量prob.variables
必须等于(例如)10 的限制。
有人可以帮忙吗?
更新:
对于这段代码,我有输出:
Status: Optimal
X1 = 1.0
x10 = 0.0
x11 = 0.0
x12 = 0.0
x13 = 0.0
x14 = 0.0
x15 = 0.0
x16 = 0.0
x17 = 0.0
x18 = 0.0
x19 = 0.0
x2 = 0.0
x20 = 0.0
x21 = 0.0
x22 = 0.0
x23 = 0.0
x24 = 0.0
x25 = 0.0
x3 = 0.0
x4 = 11.0
x5 = 0.0
x6 = 10.0
x7 = 0.0
x8 = 12.0
x9 = 0.0
objective = 660.0
prob.variables
具有非零值的数量仅等于 4。但是说我需要 10,我将如何确保呢?