我正在使用 MatPlotLib 的 plot_surface 方法生成 3D 表面,然后将其保存到 PDF 文件中。我可以通过“linewidth = 0”隐藏表面线,但在保存到 PDF 之后这些线再次出现。
编辑:对 .png 和 .svg 执行 savefig() 时,隐藏线保持隐藏状态。
下面的第一张图片是 plt.show() 结果的截图,第二张是 PDF 结果的截图。关于我可以做些什么来使隐藏线在 PDF 中看不见的任何想法?
我将在底部发布代码,因为它有点长。Windows 7(64 位)、Python 2.7.3 (win32)、MatPlotLib 1.2.0 (win32)。
改变计划,这个论坛不允许我发布图片,关于没有声誉的事情:)。所以只有代码。
#=====================================================================
# get external packages
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#=====================================================================
Gw1 = plt.figure("Sphere-Cylinder Intersection")
diagram1 = Axes3D(Gw1)
diagram1.view_init(33,-48)
# force equal aspect ratio in all 3 directions
# 3D library is missing this -- force it with an invisible bounding cube
diagram1.set_aspect('equal')
CUBE = 1.3
for direction in (-1, 1):
for point in np.diag(direction * CUBE * np.array([1,1,1])):
diagram1.plot([point[0]], [point[1]], [point[2]], 'white')
# line for y-axis (show as N/E/D coords, not plotting coords)
diagram1.plot([0.0,1.5],[0.0,0.0],[0.0,0.0],
linewidth=1,linestyle='-',color='black')
diagram1.text(1.6,0.0,0.0,'y',fontsize=14,fontweight='bold')
# line for x-axis (show as N/E/D coords, not plotting coords)
diagram1.plot([0.0,0.0],[0.0,1.5],[0.0,0.0],
linewidth=1,linestyle='-',color='black')
diagram1.text(0.0,1.6,0.0,'x',fontsize=14,fontweight='bold')
# line for z-axis (show as N/E/D coords, not plotting coords)
diagram1.plot([0.0,0.0],[0.0,0.0],[0.0,-1.5],
linewidth=1,linestyle='-',color='black')
diagram1.text(0.0,0.0,-1.7,'z',fontsize=14,fontweight='bold')
# unit sphere about origin
phi = np.linspace(0.0,np.pi/2.0,361)
theta = np.linspace(0.0,np.pi,361)
phi,theta = np.meshgrid(phi,theta)
x = np.sin(theta)*np.cos(phi)
y = np.sin(theta)*np.sin(phi)
z = np.cos(theta)
diagram1.plot_surface(x,y,z,linewidth=0.0,color='DarkKhaki',alpha=0.25)
# elliptical cylinder about z-axis 1
a = 0.10
b = 0.15
x = a*np.cos(np.linspace(0.0,np.pi/2.0,101))
z = np.linspace(-1.3,1.3,101)
x,z = np.meshgrid(x,z)
y = b*np.sin(np.arccos(x/a))
diagram1.plot_surface(x,y,z,linewidth=0.0,color='red',alpha=0.25)
# elliptical cylinder about z-axis 2
a = 0.21
b = 0.315
x = a*np.cos(np.linspace(0.0,np.pi/2.0,101))
z = np.linspace(-1.3,1.3,101)
x,z = np.meshgrid(x,z)
y = b*np.sin(np.arccos(x/a))
diagram1.plot_surface(x,y,z,linewidth=0.0,color='red',alpha=0.25)
# elliptical cylinder about z-axis 3
a = 0.42
b = 0.63
x = a*np.cos(np.linspace(0.0,np.pi/2.0,101))
z = np.linspace(-1.3,1.3,101)
x,z = np.meshgrid(x,z)
y = b*np.sin(np.arccos(x/a))
diagram1.plot_surface(x,y,z,linewidth=0.0,color='red',alpha=0.25)
# sphere-cylinder intersection 1
a = 0.10
b = 0.15
x = a*np.cos(np.linspace(0.0,np.pi/2.0,101))
y = b*np.sin(np.linspace(0.0,np.pi/2.0,101))
z = np.sqrt(np.around(1.0-x**2-y**2,decimals=10))
diagram1.plot(x,y,z,linewidth=1.0,linestyle='-',color='red')
diagram1.plot(x,y,-z,linewidth=1.0,linestyle='-',color='red')
# sphere-cylinder intersection 2
a = 0.21
b = 0.315
x = a*np.cos(np.linspace(0.0,np.pi/2.0,101))
y = b*np.sin(np.linspace(0.0,np.pi/2.0,101))
z = np.sqrt(np.around(1.0-x**2-y**2,decimals=10))
diagram1.plot(x,y,z,linewidth=1.0,linestyle='-',color='red')
diagram1.plot(x,y,-z,linewidth=1.0,linestyle='-',color='red')
# sphere-cylinder intersection 3
a = 0.42
b = 0.63
x = a*np.cos(np.linspace(0.0,np.pi/2.0,101))
y = b*np.sin(np.linspace(0.0,np.pi/2.0,101))
z = np.sqrt(np.around(1.0-x**2-y**2,decimals=10))
diagram1.plot(x,y,z,linewidth=1.0,linestyle='-',color='red')
diagram1.plot(x,y,-z,linewidth=1.0,linestyle='-',color='red')
# plotting axes off
diagram1.axis('off')
# display/save
plt.savefig ("Diagram1.pdf")
plt.show()
#=====================================================================