记录更新语法
<record-instance> { <record-field-name> = ..., ... }
当<record-instance>
是已知代数数据类型的实例/术语时起作用(因此它<record-field-name>
是已知字段),在您的代码中它只是一些(临时)多态参数gr
,因此您需要首先转换gr
为Gr
,然后更新它,并且然后...
我认为,gr
并且Gr
在某种意义上应该是等价的,也就是说,我们需要一个反函数repr
来iface
实现add
。
这是一个例子:
{-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances, FlexibleInstances #-}
data Gr a b = Gr { _internal :: [(a, b)] } deriving ( Show, Read )
class Graph gr a b where
repr :: gr -> Gr a b
iface :: Gr a b -> gr
-- iface . repr == id {gr}
-- repr . iface == id {Gr a b}
-- add element via "interface" (get a representation via @repr@, update it, and then
-- return an interface back with @iface@)
add :: (a, b) -> gr -> gr
add el g = let r = repr g in iface r { _internal = el : _internal r }
-- or
add el = iface . insNode el . repr where
insNode x (Gr xs) = Gr (x : xs) -- or whatever
instance Graph String Int Int where
repr = read
iface = show
test :: String
test = add (1 :: Int, 2 :: Int) "Gr { _internal = [] }"
-- test => "Gr {_internal = [(1,2)]}"
如果某些数据类型A
和B
聚合 Gr a b
(这样我们就不能为 写逆repr
),那么我们可以这样做:
{-# LANGUAGE MultiParamTypeClasses #-}
data Gr a b = Gr [(a, b)] deriving ( Show )
class Graph gr a b where
repr :: gr -> Gr a b
update :: gr -> (Gr a b -> Gr a b) -> gr
-- 2: update :: gr -> Gr a b -> gr
add :: (a, b) -> gr -> gr
add el g = update g $ insNode el
-- 2: update g (insNode el $ repr g)
where insNode x (Gr xs) = Gr (x : xs)
data A = A { _aRepr :: Gr Char Char, _aRest :: Char } deriving ( Show )
data B = B { _bRepr :: Gr Int Int, _bRest :: Int } deriving ( Show )
instance Graph A Char Char where
repr = _aRepr
update r f = r { _aRepr = f $ _aRepr r }
-- 2: update r g = r { _aRepr = g }
instance Graph B Int Int where
repr = _bRepr
update r f = r { _bRepr = f $ _bRepr r }
-- 2: update r g = r { _bRepr = g }
testA :: A
testA = add ('1', '2') $ A (Gr []) '0'
-- => A {_aRepr = Gr [('1','2')], _aRest = '0'}
testB :: B
testB = add (1 :: Int, 2 :: Int) $ B (Gr []) 0
-- => B {_bRepr = Gr [(1,2)], _bRest = 0}
也可以在这里使用镜头:
{-# LANGUAGE MultiParamTypeClasses, TemplateHaskell #-}
import Control.Lens
data Gr a b = Gr [(a, b)] deriving ( Show )
insNode :: (a, b) -> Gr a b -> Gr a b
insNode x (Gr xs) = Gr (x : xs)
class Graph gr a b where
reprLens :: Simple Lens gr (Gr a b)
add :: Graph gr a b => (a, b) -> gr -> gr
add el = reprLens %~ insNode el
data A = A { _aRepr :: Gr Char Char, _aRest :: Char } deriving ( Show )
data B = B { _bRepr :: Gr Int Int, _bRest :: Int } deriving ( Show )
makeLenses ''A
makeLenses ''B
instance Graph A Char Char where
reprLens = aRepr
instance Graph B Int Int where
reprLens = bRepr
main :: IO ()
main = do
let a = A (Gr []) '0'
b = B (Gr []) 0
print $ add ('0', '1') a
print $ add (0 :: Int, 1 :: Int) b
-- A {_aRepr = Gr [('0','1')], _aRest = '0'}
-- B {_bRepr = Gr [(0,1)], _bRest = 0}