6

我正在开发一个haskell 网络应用程序,我使用actor 模式来管理多线程。我遇到的一件事是如何存储例如一组客户端套接字/句柄。当然,所有线程都必须可以访问,并且可以在客户端登录/注销时更改。

因为我来自命令式世界,所以我想到了某种锁机制,但是当我注意到这是多么丑陋时,我想到了“纯粹的”可变性,实际上它有点纯粹:

import Control.Concurrent
import Control.Monad
import Network
import System.IO
import Data.List
import Data.Maybe
import System.Environment
import Control.Exception


newStorage :: (Eq a, Show a) => IO (Chan (String, Maybe (Chan [a]), Maybe a))
newStorage = do
  q <- newChan
  forkIO $ storage [] q
  return q


newHandleStorage :: IO (Chan (String, Maybe (Chan [Handle]), Maybe Handle))
newHandleStorage = newStorage


storage :: (Eq a, Show a) => [a] -> Chan (String, Maybe (Chan [a]), Maybe a) -> IO ()
storage s q = do
  let loop = (`storage` q)
  (req, reply, d) <- readChan q
  print ("processing " ++ show(d))
  case req of
    "add" -> loop ((fromJust d) : s)
    "remove" -> loop (delete (fromJust d) s)
    "get" -> do
      writeChan (fromJust reply) s
      loop s


store s d = writeChan s ("add", Nothing, Just d)
unstore s d = writeChan s ("remove", Nothing, Just d)
request s = do
  chan <- newChan
  writeChan s ("get", Just chan, Nothing)
  readChan chan

关键是线程(参与者)正在管理项目列表并根据传入请求修改列表。由于线程非常便宜,我认为这可能是一个非常好的功能替代品。

当然这只是一个原型(一个快速的概念证明)。所以我的问题是:

  1. 这是管理共享可变变量的“好”方式(在演员世界中)吗?
  2. 是否已经有这种模式的库?(我已经搜索过但我什么也没找到)

问候,克里斯

4

2 回答 2

6

stm这是一个使用and的快速而肮脏的示例pipes-network。这将设置一个简单的服务器,允许客户端连接并增加或减少计数器。它将显示一个非常简单的状态栏,显示所有已连接客户端的当前计数,并在断开连接时从栏中删除客户端计数。

首先我将从服务器开始,我慷慨地注释了代码以解释它是如何工作的:

import Control.Concurrent.STM (STM, atomically)
import Control.Concurrent.STM.TVar
import qualified Data.HashMap.Strict as H
import Data.Foldable (forM_)

import Control.Concurrent (forkIO, threadDelay)
import Control.Monad (unless)
import Control.Monad.Trans.State.Strict
import qualified Data.ByteString.Char8 as B
import Control.Proxy
import Control.Proxy.TCP
import System.IO

main = do
    hSetBuffering stdout NoBuffering

    {- These are the internal data structures.  They should be an implementation
       detail and you should never expose these references to the
       "business logic" part of the application. -}
    -- I use nRef to keep track of creating fresh Ints (which identify users)
    nRef <- newTVarIO 0       :: IO (TVar Int)
    {- hMap associates every user (i.e. Int) with a counter

       Notice how I've "striped" the hash map by storing STM references to the
       values instead of storing the values directly.  This means that I only
       actually write the hashmap when adding or removing users, which reduces
       contention for the hash map.

       Since each user gets their own unique STM reference for their counter,
       modifying counters does not cause contention with other counters or
       contention with the hash map. -}
    hMap <- newTVarIO H.empty :: IO (TVar (H.HashMap Int (TVar Int)))

    {- The following code makes heavy use of Haskell's pure closures.  Each
       'let' binding closes over its current environment, which is safe since
        Haskell is pure. -}

    let {- 'getCounters' is the only server-facing command in our STM API.  The
           only permitted operation is retrieving the current set of user
           counters.

           'getCounters' closes over the 'hMap' reference currently in scope so
           that the server never needs to be aware about our internal
           implementation. -}
        getCounters :: STM [Int]
        getCounters = do
            refs <- fmap H.elems (readTVar hMap)
            mapM readTVar refs

        {- 'init' is the only client-facing command in our STM API.  It
            initializes the client's entry in the hash map and returns two
            commands: the first command is what the client calls to 'increment'
            their counter and the second command is what the client calls to log
            off and delete
            'delete' command.

            Notice that those two returned commands each close over the client's
            unique STM reference so the client never needs to be aware of how
            exactly 'init' is implemented under the hood. -}
        init :: STM (STM (), STM ())
        init = do
            n   <- readTVar nRef
            writeTVar nRef $! n + 1

            ref <- newTVar 0
            modifyTVar' hMap (H.insert n ref)

            let incrementRef :: STM ()
                incrementRef = do
                    mRef <- fmap (H.lookup n) (readTVar hMap)
                    forM_ mRef $ \ref -> modifyTVar' ref (+ 1)

                deleteRef :: STM ()
                deleteRef = modifyTVar' hMap (H.delete n)

            return (incrementRef, deleteRef)

    {- Now for the actual program logic.  Everything past this point only uses
       the approved STM API (i.e. 'getCounters' and 'init').  If I wanted I
       could factor the above approved STM API into a separate module to enforce
       the encapsulation boundary, but I am lazy. -}

    {- Fork a thread which polls the current state of the counters and displays
       it to the console.  There is a way to implement this without polling but
       this gets the job done for now.

       Most of what it is doing is just some simple tricks to reuse the same
       console line instead of outputting a stream of lines.  Otherwise it
       would be just:

       forkIO $ forever $ do
           ns <- atomically getCounters
           print ns
    -}
    forkIO $ (`evalStateT` 0) $ forever $ do
        del <- get
        lift $ do
            putStr (replicate del '\b')
            putStr (replicate del ' ' )
            putStr (replicate del '\b')
        ns <- lift $ atomically getCounters
        let str = show ns
        lift $ putStr str
        put $! length str
        lift $ threadDelay 10000

    {- Fork a thread for each incoming connection, which listens to the client's
       commands and translates them into 'STM' actions -}
    serve HostAny "8080" $ \(socket, _) -> do
        (increment, delete) <- atomically init

        {- Right now, just do the dumb thing and convert all keypresses into
           increment commands, with the exception of the 'q' key, which will
           quit -}
        let handler :: (Proxy p) => () -> Consumer p Char IO ()
            handler () = runIdentityP loop
              where
                loop = do
                    c <- request ()
                    unless (c == 'q') $ do
                        lift $ atomically increment
                        loop

        {- This uses my 'pipes' library.  It basically is a high-level way to
           say:

           * Read binary packets from the socket no bigger than 4096 bytes

           * Get the first character from each packet and discard the rest

           * Handle the character using the above 'handler' function -}
        runProxy $ socketReadS 4096 socket >-> mapD B.head >-> handler

        {- The above pipeline finishes either when the socket closes or
           'handler' stops looping because it received a 'q'.  Either case means
           that the client is done so we log them out using 'delete'. -}
        atomically delete

接下来是客户端,它只是打开一个连接并将所有按键作为单个数据包转发:

import Control.Monad
import Control.Proxy
import Control.Proxy.Safe
import Control.Proxy.TCP.Safe
import Data.ByteString.Char8 (pack)
import System.IO

main = do
    hSetBuffering stdin NoBuffering
    hSetEcho      stdin False

    {- Again, this uses my 'pipes' library.  It basically says:

        * Read characters from the console using 'commands'

        * Pack them into a binary format

        * send them to a server running at 127.0.0.1:8080

        This finishes looping when the user types a 'q' or the connection is
        closed for whatever reason.
    -}
    runSafeIO $ runProxy $ runEitherK $
         try . commands
     >-> mapD (\c -> pack [c])
     >-> connectWriteD Nothing "127.0.0.1" "8080"

commands :: (Proxy p) => () -> Producer p Char IO ()
commands () = runIdentityP loop
  where
    loop = do
        c <- lift getChar
        respond c
        unless (c == 'q') loop

这很简单:commands生成一个 s 流Char,然后将其转换为ByteStrings,然后作为数据包发送到服务器。

如果您运行服务器和几个客户端,并让它们分别键入几个键,您的服务器显示将输出一个列表,显示每个客户端键入了多少键:

[1,6,4]

...如果某些客户端断开连接,它们将从列表中删除:

[1,4]

请注意,pipes这些示例的组件将在即将pipes-4.0.0发布的版本中大大简化,但当前的pipes生态系统仍能按原样完成工作。

于 2013-07-18T14:11:36.917 回答
3

首先,我绝对推荐使用您自己的特定数据类型来表示命令。当使用(String, Maybe (Chan [a]), Maybe a)有问题的客户端时,只需发送未知命令或发送("add", Nothing, Nothing)等,您的演员就会崩溃。我建议像

data Command a = Add a | Remove a | Get (Chan [a])

storage然后,您可以以保存的方式对命令进行模式匹配。

演员有他们的优点,但我也觉得他们有一些缺点。例如,从演员那里获得答案需要向其发送命令,然后等待回复。并且客户端不能完全确定它是否得到了回复,并且回复将是某种特定类型 - 你不能说我只想要这个特定命令的这种类型的答案(以及其中多少个)。

因此,作为示例,我将给出一个简单的 STM 解决方案。最好使用哈希表或(平衡树)集合,但由于Handle既不实现Ord也不Hashable,我们不能使用这些数据结构,所以我将继续使用列表。

module ThreadSet (
    TSet, add, remove, get
) where

import Control.Monad
import Control.Monad.STM
import Control.Concurrent.STM.TVar
import Data.List (delete)

newtype TSet a = TSet (TVar [a])

add :: (Eq a) => a -> TSet a -> STM ()
add x (TSet v) = readTVar v >>= writeTVar v . (x :)

remove :: (Eq a) => a -> TSet a -> STM ()
remove x (TSet v) = readTVar v >>= writeTVar v . delete x

get :: (Eq a) => TSet a -> STM [a]
get (TSet v) = readTVar v

该模块实现了一STM组基于任意元素。STM您可以拥有多个这样的集合,并在一次成功或失败的单个事务中一起使用它们。例如

-- | Ensures that there is exactly one element `x` in the set.
add1 :: (Eq a) => a -> TSet a -> STM ()
add1 x v = remove x v >> add x v

这对演员来说很困难,你必须将它添加为演员的另一个命令,你不能将它组合成现有的动作并且仍然具有原子性。

更新:有一篇有趣的文章解释了为什么 Clojure 设计师选择不使用演员。例如,使用actors,即使你对可变结构有很多读取而只有很少写入,它们都是序列化的,这会极大地影响性能。

于 2013-07-18T16:34:21.850 回答