我成功制作了 nvEncodeApp 但是当我运行它时,我的输出是这样的
./nvEncoder -infile=HeavyHandIdiot.3sec.yuv -outfile=outh.264 -width=1080 -height=1080
> NVEncode configuration parameters for Encoder[0]
> GPU Device ID = 0
> Input File = HeavyHandIdiot.3sec.yuv
> Output File = outh.264
> Frames [000--01] = 0 frames
> Multi-View Codec = No
> Width,Height = [1080,1080]
> Video Output Codec = 4 - H.264 Codec
> Average Bitrate = 0 (bps/sec)
> Peak Bitrate = 0 (bps/sec)
> BufferSize = 0
> Rate Control Mode = 2 - CBR (Constant Bitrate)
> Frame Rate (Num/Denom) = (30000/1001) 29.9700 fps
> GOP Length = 30
> Set Initial RC QP = 0
> Initial RC QP (I,P,B) = I(0), P(0), B(0)
> Number of B Frames = 0
> Display Aspect Ratio X = 1080
> Display Aspect Ratio Y = 1080
> Number of B-Frames = 0
> QP (All Frames) = 26
> QP (I-Frames) = 25
> QP (P-Frames) = 28
> QP (B-Frames) = 31
> Hiearchical P-Frames = 0
> Hiearchical B-Frames = 0
> SVC Temporal Scalability = 0
> Number of Temporal Layers = 0
> Outband SPSPPS = 0
> Video codec profile = 100
> Stereo 3D Mode = 0
> Stereo 3D Enable = No
> Number slices per Frame = 1
> Encoder Preset = 3 - ;
> YUV Input Format = NV12 (Semi-Planar UV Interleaved) Pitch Linear
> NVENC API Interface = 2 - CUDA
> Map Resource API Demo = No
> Dynamic Resolution Change = 0
> Dynamic Bitrate Change = 0
Input Filesize: 236390400 bytes
Input Filename: HeavyHandIdiot.3sec.yuv
Auto-Detected (nvAppEncoderParams.endFrame = 135 frames)
>> GetNumberEncoders() has detected 8 CUDA capable GPU device(s) <<
[ GPU #0 - < GRID K1 > has Compute SM 3.0, NVENC Available ]
[ GPU #1 - < GRID K1 > has Compute SM 3.0, NVENC Available ]
[ GPU #2 - < GRID K1 > has Compute SM 3.0, NVENC Available ]
[ GPU #3 - < GRID K1 > has Compute SM 3.0, NVENC Available ]
[ GPU #4 - < GRID K1 > has Compute SM 3.0, NVENC Available ]
[ GPU #5 - < GRID K1 > has Compute SM 3.0, NVENC Available ]
[ GPU #6 - < GRID K1 > has Compute SM 3.0, NVENC Available ]
[ GPU #7 - < GRID K1 > has Compute SM 3.0, NVENC Available ]
>> InitCUDA() has detected 8 CUDA capable GPU device(s)<<
[ GPU #0 - < GRID K1 > has Compute SM 3.0, Available NVENC ]
[ GPU #1 - < GRID K1 > has Compute SM 3.0, Available NVENC ]
[ GPU #2 - < GRID K1 > has Compute SM 3.0, Available NVENC ]
[ GPU #3 - < GRID K1 > has Compute SM 3.0, Available NVENC ]
[ GPU #4 - < GRID K1 > has Compute SM 3.0, Available NVENC ]
[ GPU #5 - < GRID K1 > has Compute SM 3.0, Available NVENC ]
[ GPU #6 - < GRID K1 > has Compute SM 3.0, Available NVENC ]
[ GPU #7 - < GRID K1 > has Compute SM 3.0, Available NVENC ]
>> Select GPU #0 - < GRID K1 > supports SM 3.0 and NVENC
NVENC error at src/CNVEncoder.cpp:1282 code=15(NVENC indicates that an invalid struct version was used by the client) "nvStatus"
所以,我得到这个错误:
src/CNVEncoder.cpp 处的 NVENC 错误:1282 代码=15(NVENC 表示客户端使用了无效的结构版本)“nvStatus”
这是第 1282 行,在 CNVEncoder 和 nvStatus 之后是 NVENCSTATUS 结构:
checkNVENCErrors(nvStatus);
if (nvStatus == NV_ENC_SUCCESS)
{
return S_OK;
}
什么是 NVENCSTATUS 结构?我怎么能找到那个?