我感到很困惑。我按照 MATLAB 代码为自己测试了一个程序:
feature_train=[1 1 2 1.2 1 1 700 709 708 699 678];
No_of_Clusters = 2;
No_of_Iterations = 10;
[m,v,w]=gaussmix(feature_train,[],No_of_Iterations,No_of_Clusters);
feature_ubm=[1000 1001 1002 1002 1000 1060 70 79 78 99 78 23 32 33 23 22 30];
No_of_Clusters = 3;
No_of_Iterations = 10;
[mubm,vubm,wubm]=gaussmix(feature_ubm,[],No_of_Iterations,No_of_Clusters);
feature_test=[2 2 2.2 3 1 600 650 750 800 658];
[lp_train,rp,kh,kp]=gaussmixp(feature_test,m,v,w);
[lp_ubm,rp,kh,kp]=gaussmixp(feature_test,mubm,vubm,wubm);
但是,结果让我很奇怪,因为 feature_test 必须分类在 feature_train 而不是 feature_ubm 中。正如您在下面看到的,feature_ubm 的概率超过了 feature_train!?!谁能帮我解释一下有什么问题?问题与 gaussmip 和 gaussmix MATLAB 函数有关吗?
sum(lp_ubm)
答案=
-3.4108e+06
总和(lp_train)
答案=
-1.8658e+05