如果(1)采样时间太短,(2)您需要更高的估计频率精度,并且(3)您知道您的信号是正弦波,那么您可以将信号拟合为正弦波。就像如何使用 pylab 和 numpy 将正弦曲线拟合到我的数据中一样?,除了需要添加频率。
这是一个频率约为 8 MHz 的示例图:
下面是示例代码:
""" Modified from https://stackoverflow.com/a/16716964/6036470 """
from numpy import sin, linspace, pi,average;
from pylab import plot, show, title, xlabel, ylabel, subplot, scatter
from scipy import fft, arange, ifft
import scipy
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import leastsq
ff = 8e6; # frequency of the signal
Fs = ff*128; # sampling rate
Ts = 1.0/Fs; # sampling interval
t = arange(0,((1/ff)/128)*(128)*5,Ts) # time vector
A = 2.5;
ff_0 = 8.1456e6
y = A*np.sin(2*np.pi*ff_0*t+15.38654*pi/180) + np.random.randn(len(t))/5
guess_b = 0
guess_a = y.std()*2**0.5;
guess_c = 10*pi/180
guess_d = ff*0.98*2*pi
fig = plt.figure(facecolor="white")
plt.plot(t,y,'.', label='Signal Fred. %0.4f Hz'%(ff_0/1e6))
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.grid(alpha=0.5);
optimize_func = lambda x: (x[0]*np.sin(x[2]*t+x[1]) - y);
est_a, est_c, est_d = leastsq(optimize_func, [guess_a, guess_c, guess_d])[0]
data_fit = est_a*np.sin(est_d*t+est_c) ;
plt.plot(t,data_fit,label='Fitted Est. Freq. %0.4f Hz'%(est_d/(2*pi)/1e6))
plt.legend()
plt.tight_layout();
plt.show();
fig.save("sinfit.png")