32

所以我有一个包含 CRC32C 校验和的设计,以确保数据没有被损坏。我决定使用 CRC32C,因为如果运行该软件的计算机支持 SSE 4.2,我可以同时拥有软件版本和硬件加速版本

我正在阅读英特尔的开发人员手册(第 2A 卷),它似乎提供了crc32指令背后的算法。但是,我运气不佳。英特尔的开发人员指南说如下:

BIT_REFLECT32: DEST[31-0] = SRC[0-31]
MOD2: Remainder from Polynomial division modulus 2

TEMP1[31-0] <- BIT_REFLECT(SRC[31-0])
TEMP2[31-0] <- BIT_REFLECT(DEST[31-0])
TEMP3[63-0] <- TEMP1[31-0] << 32
TEMP4[63-0] <- TEMP2[31-0] << 32
TEMP5[63-0] <- TEMP3[63-0] XOR TEMP4[63-0]
TEMP6[31-0] <- TEMP5[63-0] MOD2 0x11EDC6F41
DEST[31-0]  <- BIT_REFLECT(TEMP6[31-0])

现在,据我所知,我已经完成了TEMP6正确开始的所有工作,但我认为我可能误解了多项式除法,或者执行不正确。如果我的理解是正确的,1 / 1 mod 2 = 1,0 / 1 mod 2 = 0和两个被零除都是未定义的。

我不明白的是 64 位和 33 位操作数的二进制除法将如何工作。如果SRCis0x00000000DESTis将是所有设置位,而0xFFFFFFFF将是所有未设置位。TEMP5[63-32]TEMP5[31-0]

如果我使用来自的位TEMP5作为分子,则将有 30 个除以零,因为多项式11EDC6F41只有 33 位长(因此将其转换为 64 位无符号整数会使前 30 位未设置),因此分母未设置为 30 位。

但是,如果我使用多项式作为分子,则 的底部 32 位TEMP5未设置,导致那里除以零,结果的前 30 位将为零,因为分子的前 30 位将是零,如0 / 1 mod 2 = 0

我是否误解了这是如何工作的?只是缺少一些东西吗?还是英特尔在他们的文档中遗漏了一些关键步骤?

我去英特尔的开发人员指南寻找他们使用的算法的原因是因为他们使用了 33 位多项式,并且我想让输出相同,而当我使用 32 位多项式时没有发生这种情况1EDC6F41(显示以下)。

uint32_t poly = 0x1EDC6F41, sres, crcTable[256], data = 0x00000000;

for (n = 0; n < 256; n++) {
    sres = n;
    for (k = 0; k < 8; k++)
        sres = (sres & 1) == 1 ? poly ^ (sres >> 1) : (sres >> 1);
    crcTable[n] = sres;
}
sres = 0xFFFFFFFF;

for (n = 0; n < 4; n++) {
    sres = crcTable[(sres ^ data) & 0xFF] ^ (sres >> 8);
}

上面的代码4138093821作为输出产生,crc32操作码2346497208使用输入产生0x00000000

对不起,如果这在某些地方写得不好或难以理解,那对我来说已经很晚了。

4

4 回答 4

76

这是 CRC-32C 的软件和硬件版本。软件版本经过优化,可以一次处理 8 个字节。硬件版本经过优化,可以crc32q在单个内核上有效地并行运行三个指令,因为该指令的吞吐量是一个周期,但延迟是三个周期。

crc32c.c:

/* crc32c.c -- compute CRC-32C using the Intel crc32 instruction
 * Copyright (C) 2013, 2021 Mark Adler
 * Version 1.2  5 Jun 2021  Mark Adler
 */

/*
  This software is provided 'as-is', without any express or implied
  warranty.  In no event will the author be held liable for any damages
  arising from the use of this software.

  Permission is granted to anyone to use this software for any purpose,
  including commercial applications, and to alter it and redistribute it
  freely, subject to the following restrictions:

  1. The origin of this software must not be misrepresented; you must not
     claim that you wrote the original software. If you use this software
     in a product, an acknowledgment in the product documentation would be
     appreciated but is not required.
  2. Altered source versions must be plainly marked as such, and must not be
     misrepresented as being the original software.
  3. This notice may not be removed or altered from any source distribution.

  Mark Adler
  madler@alumni.caltech.edu
 */

/* Version History:
 1.0  10 Feb 2013  First version
 1.1  31 May 2021  Correct register constraints on assembly instructions
                   Include pre-computed tables to avoid use of pthreads
                   Return zero for the CRC when buf is NULL, as initial value
 1.2   5 Jun 2021  Make tables constant
 */

// Use hardware CRC instruction on Intel SSE 4.2 processors.  This computes a
// CRC-32C, *not* the CRC-32 used by Ethernet and zip, gzip, etc.  A software
// version is provided as a fall-back, as well as for speed comparisons.

#include <stddef.h>
#include <stdint.h>

// Tables for CRC word-wise calculation, definitions of LONG and SHORT, and CRC
// shifts by LONG and SHORT bytes.
#include "crc32c.h"

// Table-driven software version as a fall-back.  This is about 15 times slower
// than using the hardware instructions.  This assumes little-endian integers,
// as is the case on Intel processors that the assembler code here is for.
static uint32_t crc32c_sw(uint32_t crc, void const *buf, size_t len) {
    if (buf == NULL)
        return 0;
    unsigned char const *data = buf;
    while (len && ((uintptr_t)data & 7) != 0) {
        crc = (crc >> 8) ^ crc32c_table[0][(crc ^ *data++) & 0xff];
        len--;
    }
    size_t n = len >> 3;
    for (size_t i = 0; i < n; i++) {
        uint64_t word = crc ^ ((uint64_t const *)data)[i];
        crc = crc32c_table[7][word & 0xff] ^
              crc32c_table[6][(word >> 8) & 0xff] ^
              crc32c_table[5][(word >> 16) & 0xff] ^
              crc32c_table[4][(word >> 24) & 0xff] ^
              crc32c_table[3][(word >> 32) & 0xff] ^
              crc32c_table[2][(word >> 40) & 0xff] ^
              crc32c_table[1][(word >> 48) & 0xff] ^
              crc32c_table[0][word >> 56];
    }
    data += n << 3;
    len &= 7;
    while (len) {
        len--;
        crc = (crc >> 8) ^ crc32c_table[0][(crc ^ *data++) & 0xff];
    }
    return crc;
}

// Apply the zeros operator table to crc.
static uint32_t crc32c_shift(uint32_t const zeros[][256], uint32_t crc) {
    return zeros[0][crc & 0xff] ^ zeros[1][(crc >> 8) & 0xff] ^
           zeros[2][(crc >> 16) & 0xff] ^ zeros[3][crc >> 24];
}

// Compute CRC-32C using the Intel hardware instruction. Three crc32q
// instructions are run in parallel on a single core. This gives a
// factor-of-three speedup over a single crc32q instruction, since the
// throughput of that instruction is one cycle, but the latency is three
// cycles.
static uint32_t crc32c_hw(uint32_t crc, void const *buf, size_t len) {
    if (buf == NULL)
        return 0;

    // Pre-process the crc.
    uint64_t crc0 = crc ^ 0xffffffff;

    // Compute the crc for up to seven leading bytes, bringing the data pointer
    // to an eight-byte boundary.
    unsigned char const *next = buf;
    while (len && ((uintptr_t)next & 7) != 0) {
        __asm__("crc32b\t" "(%1), %0"
                : "+r"(crc0)
                : "r"(next), "m"(*next));
        next++;
        len--;
    }

    // Compute the crc on sets of LONG*3 bytes, making use of three ALUs in
    // parallel on a single core.
    while (len >= LONG*3) {
        uint64_t crc1 = 0;
        uint64_t crc2 = 0;
        unsigned char const *end = next + LONG;
        do {
            __asm__("crc32q\t" "(%3), %0\n\t"
                    "crc32q\t" LONGx1 "(%3), %1\n\t"
                    "crc32q\t" LONGx2 "(%3), %2"
                    : "+r"(crc0), "+r"(crc1), "+r"(crc2)
                    : "r"(next), "m"(*next));
            next += 8;
        } while (next < end);
        crc0 = crc32c_shift(crc32c_long, crc0) ^ crc1;
        crc0 = crc32c_shift(crc32c_long, crc0) ^ crc2;
        next += LONG*2;
        len -= LONG*3;
    }

    // Do the same thing, but now on SHORT*3 blocks for the remaining data less
    // than a LONG*3 block.
    while (len >= SHORT*3) {
        uint64_t crc1 = 0;
        uint64_t crc2 = 0;
        unsigned char const *end = next + SHORT;
        do {
            __asm__("crc32q\t" "(%3), %0\n\t"
                    "crc32q\t" SHORTx1 "(%3), %1\n\t"
                    "crc32q\t" SHORTx2 "(%3), %2"
                    : "+r"(crc0), "+r"(crc1), "+r"(crc2)
                    : "r"(next), "m"(*next));
            next += 8;
        } while (next < end);
        crc0 = crc32c_shift(crc32c_short, crc0) ^ crc1;
        crc0 = crc32c_shift(crc32c_short, crc0) ^ crc2;
        next += SHORT*2;
        len -= SHORT*3;
    }

    // Compute the crc on the remaining eight-byte units less than a SHORT*3
    // block.
    unsigned char const *end = next + (len - (len & 7));
    while (next < end) {
        __asm__("crc32q\t" "(%1), %0"
                : "+r"(crc0)
                : "r"(next), "m"(*next));
        next += 8;
    }
    len &= 7;

    // Compute the crc for up to seven trailing bytes.
    while (len) {
        __asm__("crc32b\t" "(%1), %0"
                : "+r"(crc0)
                : "r"(next), "m"(*next));
        next++;
        len--;
    }

    // Return the crc, post-processed.
    return ~(uint32_t)crc0;
}

// Check for SSE 4.2.  SSE 4.2 was first supported in Nehalem processors
// introduced in November, 2008.  This does not check for the existence of the
// cpuid instruction itself, which was introduced on the 486SL in 1992, so this
// will fail on earlier x86 processors.  cpuid works on all Pentium and later
// processors.
#define SSE42(have) \
    do { \
        uint32_t eax, ecx; \
        eax = 1; \
        __asm__("cpuid" \
                : "=c"(ecx) \
                : "a"(eax) \
                : "%ebx", "%edx"); \
        (have) = (ecx >> 20) & 1; \
    } while (0)

// Compute a CRC-32C.  If the crc32 instruction is available, use the hardware
// version.  Otherwise, use the software version.
uint32_t crc32c(uint32_t crc, void const *buf, size_t len) {
    int sse42;
    SSE42(sse42);
    return sse42 ? crc32c_hw(crc, buf, len) : crc32c_sw(crc, buf, len);
}

生成 crc32c.h 的代码(stackoverflow 不允许我自己发布表格,因为答案中有 30,000 个字符的限制):

// Generate crc32c.h for crc32c.c.

#include <stdio.h>
#include <stdint.h>

#define LONG 8192
#define SHORT 256

// Print a 2-D table of four-byte constants in hex.
static void print_table(uint32_t *tab, size_t rows, size_t cols, char *name) {
    printf("static uint32_t const %s[][%zu] = {\n", name, cols);
    size_t end = rows * cols;
    size_t k = 0;
    for (;;) {
        fputs("   {", stdout);
        size_t n = 0, j = 0;
        for (;;) {
            printf("0x%08x", tab[k + n]);
            if (++n == cols)
                break;
            putchar(',');
            if (++j == 6) {
                fputs("\n   ", stdout);
                j = 0;
            }
            putchar(' ');
        }
        k += cols;
        if (k == end)
            break;
        puts("},");
    }
    puts("}\n};");
}

/* CRC-32C (iSCSI) polynomial in reversed bit order. */
#define POLY 0x82f63b78

static void crc32c_word_table(void) {
    uint32_t table[8][256];

    // Generate byte-wise table.
    for (unsigned n = 0; n < 256; n++) {
        uint32_t crc = ~n;
        for (unsigned k = 0; k < 8; k++)
            crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
        table[0][n] = ~crc;
    }

    // Use byte-wise table to generate word-wise table.
    for (unsigned n = 0; n < 256; n++) {
        uint32_t crc = ~table[0][n];
        for (unsigned k = 1; k < 8; k++) {
            crc = table[0][crc & 0xff] ^ (crc >> 8);
            table[k][n] = ~crc;
        }
    }

    // Print table.
    print_table(table[0], 8, 256, "crc32c_table");
}

// Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC
// polynomial. For speed, this requires that a not be zero.
static uint32_t multmodp(uint32_t a, uint32_t b) {
    uint32_t prod = 0;
    for (;;) {
        if (a & 0x80000000) {
            prod ^= b;
            if ((a & 0x7fffffff) == 0)
                break;
        }
        a <<= 1;
        b = b & 1 ? (b >> 1) ^ POLY : b >> 1;
    }
    return prod;
}

/* Take a length and build four lookup tables for applying the zeros operator
   for that length, byte-by-byte, on the operand. */
static void crc32c_zero_table(size_t len, char *name) {
    // Generate operator for len zeros.
    uint32_t op = 0x80000000;               // 1 (x^0)
    uint32_t sq = op >> 4;                  // x^4
    while (len) {
        sq = multmodp(sq, sq);              // x^2^(k+3), k == len bit position
        if (len & 1)
            op = multmodp(sq, op);
        len >>= 1;
    }

    // Generate table to update each byte of a CRC using op.
    uint32_t table[4][256];
    for (unsigned n = 0; n < 256; n++) {
        table[0][n] = multmodp(op, n);
        table[1][n] = multmodp(op, n << 8);
        table[2][n] = multmodp(op, n << 16);
        table[3][n] = multmodp(op, n << 24);
    }

    // Print the table to stdout.
    print_table(table[0], 4, 256, name);
}

int main(void) {
    puts(
"// crc32c.h\n"
"// Tables and constants for crc32c.c software and hardware calculations.\n"
"\n"
"// Table for a 64-bits-at-a-time software CRC-32C calculation. This table\n"
"// has built into it the pre and post bit inversion of the CRC."
    );
    crc32c_word_table();
    puts(
"\n// Block sizes for three-way parallel crc computation.  LONG and SHORT\n"
"// must both be powers of two.  The associated string constants must be set\n"
"// accordingly, for use in constructing the assembler instructions."
        );
    printf("#define LONG %d\n", LONG);
    printf("#define LONGx1 \"%d\"\n", LONG);
    printf("#define LONGx2 \"%d\"\n", 2 * LONG);
    printf("#define SHORT %d\n", SHORT);
    printf("#define SHORTx1 \"%d\"\n", SHORT);
    printf("#define SHORTx2 \"%d\"\n", 2 * SHORT);
    puts(
"\n// Table to shift a CRC-32C by LONG bytes."
    );
    crc32c_zero_table(8192, "crc32c_long");
    puts(
"\n// Table to shift a CRC-32C by SHORT bytes."
    );
    crc32c_zero_table(256, "crc32c_short");
    return 0;
}
于 2013-07-15T04:28:34.223 回答
17

Mark Adler 的回答是正确且完整的,但那些寻求在其应用程序中集成 CRC-32C 的快速简便方法的人可能会发现调整代码有点困难,尤其是在他们使用 Windows 和 .NET 的情况下。

我创建了一个库,它根据可用的硬件使用硬件或软件方法实现 CRC-32C 。它可用作 C++ 和 .NET 的 NuGet 包。当然是开源的。

除了打包上面 Mark Adler 的代码之外,我还找到了一种简单的方法,可以将软件回退的吞吐量提高 50%。在我的电脑上,图书馆现在在软件上达到了 2 GB/s,在硬件上达到了超过 20 GB/s。对于那些好奇的人,这里是优化的软件实现:

static uint32_t append_table(uint32_t crci, buffer input, size_t length)
{
    buffer next = input;
#ifdef _M_X64
    uint64_t crc;
#else
    uint32_t crc;
#endif

    crc = crci ^ 0xffffffff;
#ifdef _M_X64
    while (length && ((uintptr_t)next & 7) != 0)
    {
        crc = table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
        --length;
    }
    while (length >= 16)
    {
        crc ^= *(uint64_t *)next;
        uint64_t high = *(uint64_t *)(next + 8);
        crc = table[15][crc & 0xff]
            ^ table[14][(crc >> 8) & 0xff]
            ^ table[13][(crc >> 16) & 0xff]
            ^ table[12][(crc >> 24) & 0xff]
            ^ table[11][(crc >> 32) & 0xff]
            ^ table[10][(crc >> 40) & 0xff]
            ^ table[9][(crc >> 48) & 0xff]
            ^ table[8][crc >> 56]
            ^ table[7][high & 0xff]
            ^ table[6][(high >> 8) & 0xff]
            ^ table[5][(high >> 16) & 0xff]
            ^ table[4][(high >> 24) & 0xff]
            ^ table[3][(high >> 32) & 0xff]
            ^ table[2][(high >> 40) & 0xff]
            ^ table[1][(high >> 48) & 0xff]
            ^ table[0][high >> 56];
        next += 16;
        length -= 16;
    }
#else
    while (length && ((uintptr_t)next & 3) != 0)
    {
        crc = table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
        --length;
    }
    while (length >= 12)
    {
        crc ^= *(uint32_t *)next;
        uint32_t high = *(uint32_t *)(next + 4);
        uint32_t high2 = *(uint32_t *)(next + 8);
        crc = table[11][crc & 0xff]
            ^ table[10][(crc >> 8) & 0xff]
            ^ table[9][(crc >> 16) & 0xff]
            ^ table[8][crc >> 24]
            ^ table[7][high & 0xff]
            ^ table[6][(high >> 8) & 0xff]
            ^ table[5][(high >> 16) & 0xff]
            ^ table[4][high >> 24]
            ^ table[3][high2 & 0xff]
            ^ table[2][(high2 >> 8) & 0xff]
            ^ table[1][(high2 >> 16) & 0xff]
            ^ table[0][high2 >> 24];
        next += 12;
        length -= 12;
    }
#endif
    while (length)
    {
        crc = table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
        --length;
    }
    return (uint32_t)crc ^ 0xffffffff;
}

如您所见,它一次只处理更大的块。它需要更大的查找表,但它仍然对缓存友好。该表的生成方式相同,只是行数更多。

我探索的另一件事是使用 PCLMULQDQ 指令在 AMD 处理器上获得硬件加速。我已经成功地将英特尔的 zlib CRC 补丁(也可以在 GitHub 上找到)移植到 CRC-32C 多项式除了魔术常数 0x9db42487。如果有人能够破译那个,请告诉我. 在supersaw7 对 reddit 的出色解释之后,我还移植了难以捉摸的 0x9db42487 常量,我只需要找一些时间来打磨和测试它。

于 2014-02-20T17:28:15.893 回答
15

首先,英特尔的CRC32指令用于计算CRC-32C(即使用与常规 CRC32 不同的多项式。查看Wikipedia CRC32条目)

要使用英特尔的 CRC32C 硬件加速,gcc您可以:

  1. asm通过语句在 C 代码中内联汇编语言
  2. 使用内在函数_mm_crc32_u8_mm_crc32_u16或。有关 Intel编译器的描述,请参阅Intel Intrinsics Guide ,但也实现了它们。_mm_crc32_u32_mm_crc32_u64iccgcc

这就是__mm_crc32_u8一次占用一个字节的方法,使用__mm_crc32_u64会进一步提高性能,因为一次占用 8 个字节。

uint32_t sse42_crc32(const uint8_t *bytes, size_t len)
{
  uint32_t hash = 0;
  size_t i = 0;
  for (i=0;i<len;i++) {
    hash = _mm_crc32_u8(hash, bytes[i]);
  }

  return hash;
}

要编译它,您需要传入-msse4.2. CFLAGS否则gcc -g -msse4.2 test.c它会抱怨undefined reference to _mm_crc32_u8

如果在运行可执行文件的平台上没有该指令,您想恢复为纯 C 实现,您可以使用 GCC 的ifunc属性。喜欢

uint32_t sse42_crc32(const uint8_t *bytes, size_t len)
{
  /* use _mm_crc32_u* here */
}

uint32_t default_crc32(const uint8_t *bytes, size_t len)
{
  /* pure C implementation */
}

/* this will be called at load time to decide which function really use */
/* sse42_crc32 if SSE 4.2 is supported */
/* default_crc32 if not */
static void * resolve_crc32(void) {
  __builtin_cpu_init();
  if (__builtin_cpu_supports("sse4.2")) return sse42_crc32;

  return default_crc32;
}

/* crc32() implementation will be resolved at load time to either */
/* sse42_crc32() or default_crc32() */
uint32_t crc32(const uint8_t *bytes, size_t len) __attribute__ ((ifunc ("resolve_crc32")));
于 2015-07-02T12:05:05.820 回答
8

我在这里比较各种算法:https ://github.com/htot/crc32c

最快的算法取自 Intel 的 crc_iscsi_v_pcl.asm 汇编代码(在 linux 内核中以修改后的形式提供)并使用包含在该项目中的 C 包装器 (crcintelasm.cc)。

为了能够首先在 32 位平台上运行此代码,它已尽可能移植到 C (crc32intelc),需要少量的内联汇编。代码的某些部分取决于位数,crc32q 在 32 位上不可用,movq 也不可用,这些都放在宏 (crc32intel.h) 中,并带有 32 位平台的替代代码。

于 2016-10-04T22:35:16.207 回答