[Full disclosure: I work at ScaleOut Software, the company which created ScaleOut hServer.]
In-memory data grids create a replica for every object to ensure high availability in case of failures.The aggregate amount of memory that is required is the memory used to store the objects with the addition of the memory used to store object replicas. In your example, you will need 200 GB of total memory: 100 GB for objects and 100 GB for replicas. For example, in a four-server cluster, each server needs 50 GB of memory available to the ScaleOut hServer service.
With the current release, ScaleOut hServer takes the first step in enabling real-time analytics by speeding up data access. It does this in two ways, which are implemented using different input/output formats. The first mode of operation uses the grid as a cache for HDFS, and the second uses the grid as the primary storage for a data set, providing support for fast-changing, memory-based data. Accessing data using an in-memory data grid reduces latency by eliminating disk I/O and minimizing network overhead. Also, caching HDFS data provides an additional performance boost by storing keys and values generated by the record reader instead of raw HDFS files in the grid.