我想使用 PIL 库从大图像中找到子图像。我也想知道找到它的坐标?
问问题
15728 次
3 回答
21
import cv2
import numpy as np
image = cv2.imread("Large.png")
template = cv2.imread("small.png")
result = cv2.matchTemplate(image,template,cv2.TM_CCOEFF_NORMED)
print np.unravel_index(result.argmax(),result.shape)
这对我来说工作正常且有效。
于 2013-08-06T08:57:58.817 回答
9
我设法只使用 PIL 来做到这一点。
一些警告:
- 这是一个像素完美的搜索。它只是寻找匹配的 RGB 像素。
- 为简单起见,我删除了 alpha/透明度通道。我只是在寻找 RGB 像素。
- 此代码将整个子图像像素阵列加载到内存中,同时将大图像保留在内存之外。在我的系统上,Python 为通过 1920x1200 屏幕截图搜索的微小 40x30 子图像维护了约 26 MiB 的内存占用。
- 这个简单的例子效率不高,但提高效率会增加复杂性。在这里,我保持直截了当且易于理解。
- 此示例适用于 Windows 和 OSX。未在 Linux 上测试。它只截取主显示器的屏幕截图(用于多显示器设置)。
这是代码:
import os
from itertools import izip
from PIL import Image, ImageGrab
def iter_rows(pil_image):
"""Yield tuple of pixels for each row in the image.
From:
http://stackoverflow.com/a/1625023/1198943
:param PIL.Image.Image pil_image: Image to read from.
:return: Yields rows.
:rtype: tuple
"""
iterator = izip(*(iter(pil_image.getdata()),) * pil_image.width)
for row in iterator:
yield row
def find_subimage(large_image, subimg_path):
"""Find subimg coords in large_image. Strip transparency for simplicity.
:param PIL.Image.Image large_image: Screen shot to search through.
:param str subimg_path: Path to subimage file.
:return: X and Y coordinates of top-left corner of subimage.
:rtype: tuple
"""
# Load subimage into memory.
with Image.open(subimg_path) as rgba, rgba.convert(mode='RGB') as subimg:
si_pixels = list(subimg.getdata())
si_width = subimg.width
si_height = subimg.height
si_first_row = tuple(si_pixels[:si_width])
si_first_row_set = set(si_first_row) # To speed up the search.
si_first_pixel = si_first_row[0]
# Look for first row in large_image, then crop and compare pixel arrays.
for y_pos, row in enumerate(iter_rows(large_image)):
if si_first_row_set - set(row):
continue # Some pixels not found.
for x_pos in range(large_image.width - si_width + 1):
if row[x_pos] != si_first_pixel:
continue # Pixel does not match.
if row[x_pos:x_pos + si_width] != si_first_row:
continue # First row does not match.
box = x_pos, y_pos, x_pos + si_width, y_pos + si_height
with large_image.crop(box) as cropped:
if list(cropped.getdata()) == si_pixels:
# We found our match!
return x_pos, y_pos
def find(subimg_path):
"""Take a screenshot and find the subimage within it.
:param str subimg_path: Path to subimage file.
"""
assert os.path.isfile(subimg_path)
# Take screenshot.
with ImageGrab.grab() as rgba, rgba.convert(mode='RGB') as screenshot:
print find_subimage(screenshot, subimg_path)
速度:
$ python -m timeit -n1 -s "from tests.screenshot import find" "find('subimg.png')"
(429, 361)
(465, 388)
(536, 426)
1 loops, best of 3: 316 msec per loop
在运行上述命令时,我在运行时沿对角线移动了包含子图像的窗口timeit
。
于 2016-04-24T21:53:20.197 回答
0
听起来您想执行对象检测,可能是通过模板匹配。除非您正在寻找精确的逐像素匹配,否则这不是一个微不足道的问题,而且 PIL 并不打算做这种事情。
Jan 是对的,您应该尝试 OpenCV。它是一个强大的计算机视觉库,具有良好的 Python 绑定。
这是 Python 中一个很好的简短示例,它在匹配区域周围绘制一个矩形: https ://github.com/jungilhan/Tutorial/blob/master/OpenCV/templateMatching.py
于 2013-07-17T19:46:47.913 回答