我正在尝试创建三个 [1, m] numpy 矩阵的等高线图。当我尝试绘制时:
plt.contour(reg.theta[0,:], reg.theta[1,:], reg.J[0,:])
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
我认为这与以下事实有关
In[167]: shape(reg.theta[0,:])
Out[167]: (1, 15000)
轮廓想要一些类似的东西(15000,)
我试图创建一个类似于我在 matlab 中使用的网格网格
X , Y = meshgrid(reg.theta[0,:], reg.theta[1,:]
ValueError: total size of new array must be unchanged[1,:])
但是,我不知道如何解释这一点。
请指教stackoverflow!
这是我在 Python 2.7 上测试的完整代码
from numpy import *
import matplotlib.pyplot as plt
class LinearRegression:
def __init__(self, data):
self.data_loc = data
self.max_it = 15000
self.theta = matrix(ones((2, self.max_it)))
self.alpha = .01
self.J = matrix(zeros((1, self.max_it)))
def importData(self):
Data = loadtxt(self.data_loc, delimiter = ',')
rawData = matrix(Data)
x = rawData[:,0]
y = rawData[:,1]
[m,n] = shape(x)
x_0 = matrix(ones((m,1)))
x = concatenate((x_0, x), axis = 1)
return x, y, m, n
def center(self, x):
x = x / mean(x)
return x
def scale(self, x):
x = x/ std(x)
return x
def funct(self, m, b):
return lambda x: m*x + b
def cost(self, x, y, m, mx, b):
f = self.funct(mx, b)
err = power( (f(x) - y), 2).sum()
err = err / (2*len(x))
return err
def gradientDesc(self, x, y, m):
for i in range(0, self.max_it -1):
error = (1.0/m) * transpose(x) * ((x * self.theta[:,i]) - y )
delta = self.theta[:,i] - self.alpha*error
self.J[0,i] = (self.cost( x, y, m, self.theta[1,i], self.theta[0,i]))
self.theta[:, i+1] = delta
print('Calculation Complete')
return self.theta, error
reg = LinearRegression('/users/michael/documents/machine_learning/ex1/ex1data1.txt')
x, y, m ,n = reg.importData()
theta, error = reg.gradientDesc(x,y,m)
print (reg.theta[:,reg.max_it -1])
XX = linspace(0,m,m)
J = reg.theta[0,reg.max_it-1] + reg.theta[1, reg.max_it-1] * XX
plt.plot(XX, J)
plt.scatter(x[:,1],y)`