查看一些示例文件,您似乎只需要确定要读取一次的数字,即可用于处理文件的所有部分。
正如我在评论中提到的,grep
这对于帮助自动化流程很有用。这是我想出的一个快速功能:
ReadFunky <- function(myFile) {
fh <- gzfile(myFile)
myFile <- readLines(fh)
vecLen <- as.numeric(myFile[5])
startAt <- grep(paste("^\\s+", vecLen), myFile)
T1 <- lapply(startAt[-5], function(x) {
scan(fh, n = vecLen, skip = x)
})
T2 <- gsub("\\(|\\)", "",
unlist(strsplit(myFile[(startAt[5]+1):length(myFile)], ")(",
fixed = TRUE)))
T2 <- read.csv(text = T2, header = FALSE)
T2 <- split(T2, rep(1:vecLen, each = vecLen))
T1[[5]] <- T2
names(T1) <- myFile[startAt-1]
T1
}
您可以将其应用于下载的文件。只需替换为下载文件的实际路径即可。
temp <- ReadFunky("~/Downloads/AL182012_1030_0730.gz")
该函数返回一个list
. 列表中的前四项是坐标向量。
str(temp[1:4])
# List of 4
# $ MERCATOR X COORDINATES ... KILOMETERS : num [1:159] -476 -470 -464 -458 -452 ...
# $ MERCATOR Y COORDINATES ... KILOMETERS : num [1:159] -476 -470 -464 -458 -452 ...
# $ EAST LONGITUDE COORDINATES ... DEGREES: num [1:159] -81.1 -81 -80.9 -80.9 -80.8 ...
# $ NORTH LATITUDE COORDINATES ... DEGREES: num [1:159] 36.2 36.3 36.3 36.4 36.4 ...
第五个项目是一组 2-column data.frame
,其中包含“带括号的复杂数组”中的数据。不太确定这个数据的最佳结构是什么,所以我只是把它放在data.frame
s. 您将获得data.frame
与给定数据集的预期值一样多的 s(在本例中为 159)。
length(temp[[5]])
# [1] 159
str(temp[[5]][1:4])
# List of 4
# $ 1:'data.frame': 159 obs. of 2 variables:
# ..$ V1: num [1:159] 7.59 7.6 7.59 7.59 7.58 ...
# ..$ V2: num [1:159] -1.33 -1.28 -1.22 -1.16 -1.1 ...
# $ 2:'data.frame': 159 obs. of 2 variables:
# ..$ V1: num [1:159] 7.66 7.66 7.65 7.65 7.64 ...
# ..$ V2: num [1:159] -1.29 -1.24 -1.19 -1.13 -1.07 ...
# $ 3:'data.frame': 159 obs. of 2 variables:
# ..$ V1: num [1:159] 7.73 7.72 7.72 7.71 7.7 ...
# ..$ V2: num [1:159] -1.26 -1.21 -1.15 -1.1 -1.04 ...
# $ 4:'data.frame': 159 obs. of 2 variables:
# ..$ V1: num [1:159] 7.8 7.8 7.79 7.78 7.76 ...
# ..$ V2: num [1:159] -1.22 -1.17 -1.12 -1.06 -1.01 ...
更新
如果要修改函数以便可以直接从 FTP url 读取,请将前两行更改为如下所示,然后从“myFile”行继续:
ReadFunky <- function(myFile, fromURL = TRUE) {
if (isTRUE(fromURL)) {
x <- strsplit(myFile, "/")[[1]]
y <- download.file(myFile, destfile = x[length(x)])
fh <- gzfile(x[length(x)])
} else {
fh <- gzfile(myFile)
}
用法类似于:temp <- ReadFunky("ftp://ftp.aoml.noaa.gov/hrd/pub/hwind/Operational/2012/AL182012/1023/1330/AL182012_1023_1330.gz")
对于您要直接下载temp <- ReadFunky("~/AL182012_1023_1330.gz", fromURL=FALSE)
的文件,以及对于您已经保存在系统上的文件。