我想用点扩散函数 (PSF) 对 2D 图像进行反卷积。我已经看到有一个scipy.signal.deconvolve
适用于一维数组和scipy.signal.fftconvolve
卷积多维数组的函数。scipy 中是否有特定的函数可以对二维数组进行反卷积?
我定义了一个 fftdeconvolve 函数,将 fftconvolve 中的产品替换为一个除法:
def fftdeconvolve(in1, in2, mode="full"):
"""Deconvolve two N-dimensional arrays using FFT. See convolve.
"""
s1 = np.array(in1.shape)
s2 = np.array(in2.shape)
complex_result = (np.issubdtype(in1.dtype, np.complex) or
np.issubdtype(in2.dtype, np.complex))
size = s1+s2-1
# Always use 2**n-sized FFT
fsize = 2**np.ceil(np.log2(size))
IN1 = fftpack.fftn(in1,fsize)
IN1 /= fftpack.fftn(in2,fsize)
fslice = tuple([slice(0, int(sz)) for sz in size])
ret = fftpack.ifftn(IN1)[fslice].copy()
del IN1
if not complex_result:
ret = ret.real
if mode == "full":
return ret
elif mode == "same":
if np.product(s1,axis=0) > np.product(s2,axis=0):
osize = s1
else:
osize = s2
return _centered(ret,osize)
elif mode == "valid":
return _centered(ret,abs(s2-s1)+1)
但是,下面的代码在卷积和反卷积后并没有恢复原始信号:
sx, sy = 100, 100
X, Y = np.ogrid[0:sx, 0:sy]
star = stats.norm.pdf(np.sqrt((X - sx/2)**2 + (Y - sy/2)**2), 0, 4)
psf = stats.norm.pdf(np.sqrt((X - sx/2)**2 + (Y - sy/2)**2), 0, 10)
star_conv = fftconvolve(star, psf, mode="same")
star_deconv = fftdeconvolve(star_conv, psf, mode="same")
f, axes = plt.subplots(2,2)
axes[0,0].imshow(star)
axes[0,1].imshow(psf)
axes[1,0].imshow(star_conv)
axes[1,1].imshow(star_deconv)
plt.show()
生成的二维数组显示在下图中的下一行。如何使用 FFT 反卷积恢复原始信号?