/* A Naive recursive implementation of LIS problem */
#include<stdio.h>
#include<stdlib.h>
/* To make use of recursive calls, this function must return two things:
1) Length of LIS ending with element arr[n-1]. We use max_ending_here
for this purpose
2) Overall maximum as the LIS may end with an element before arr[n-1]
max_ref is used this purpose.
The value of LIS of full array of size n is stored in *max_ref which is our final result
*/
int _lis( int arr[], int n, int *max_ref)
{
/* Base case */
if(n == 1)
return 1;
int res, max_ending_here = 1; // length of LIS ending with arr[n-1]
/* Recursively get all LIS ending with arr[0], arr[1] ... ar[n-2]. If
arr[i-1] is smaller than arr[n-1], and max ending with arr[n-1] needs
to be updated, then update it */
for(int i = 1; i < n; i++)
{
res = _lis(arr, i, max_ref);
if (arr[i-1] < arr[n-1] && res + 1 > max_ending_here)
max_ending_here = res + 1;
}
// Compare max_ending_here with the overall max. And update the
// overall max if needed
if (*max_ref < max_ending_here)
*max_ref = max_ending_here;
// Return length of LIS ending with arr[n-1]
return max_ending_here;
}
// The wrapper function for _lis()
int lis(int arr[], int n)
{
// The max variable holds the result
int max = 1;
// The function _lis() stores its result in max
_lis( arr, n, &max );
// returns max
return max;
}
/* Driver program to test above function */
int main()
{
int arr[] = { 10, 22, 9, 33, 21, 50, 41, 60 };
int n = sizeof(arr)/sizeof(arr[0]);
printf("Length of LIS is %d\n", lis( arr, n ));
getchar();
return 0;
令 arr[0..n-1] 为输入数组,L(i) 为 LIS 的长度,直到索引 i 使得 arr[i] 是 LIS 的一部分,而 arr[i] 是 LIS 中的最后一个元素,那么 L(i) 可以递归地写成。L(i) = { 1 + Max ( L(j) ) } 其中 j < i 且 arr[j] < arr[i] 如果没有这样的 j,则 L(i) = 1。
在上述实现中,我无法理解条件的使用/重要性if (arr[i-1] < arr[n-1] && res + 1 > max_ending_here)
。它甚至不像递归公式,那为什么需要它。L(i)/*is just*/ = { 1 + Max ( L(j) ) } where j < i and arr[j] < arr[i] and if there is no such j then L(i) = 1
什么时候我们需要比较arr[i-1] < arr[n-1]
。是否有可能提供类似于递归公式的递归解决方案?