我有数以万计的模拟要在具有多个内核的系统上运行。目前,它是串行完成的,我知道我的输入参数,并将我的结果存储在一个字典中。
系列版本
import time
import random
class MyModel(object):
input = None
output = None
def run(self):
time.sleep(random.random()) # simulate a complex task
self.output = self.input * 10
# Run serial tasks and store results for each parameter
parameters = range(10)
results = {}
for p in parameters:
m = MyModel()
m.input = p
m.run()
results[p] = m.output
print('results: ' + str(results))
这需要 <10 秒,并显示正确的结果:
results: {0: 0, 1: 10, 2: 20, 3: 30, 4: 40, 5: 50, 6: 60, 7: 70, 8: 80, 9: 90}
并行版本
我尝试并行化此过程是基于multiprocessing
文本“一个示例显示如何使用队列将任务提供给工作进程集合并收集结果”附近的模块中的示例(抱歉,没有可用的 URL 锚点)。
以下构建在串行版本的上半部分:
from multiprocessing import Process, Queue
NUMBER_OF_PROCESSES = 4
def worker(input, output):
for args in iter(input.get, 'STOP'):
m = MyModel()
m.input = args[0]
m.run()
output.put(m.output)
# Run parallel tasks and store results for each parameter
parameters = range(10)
results = {}
# Create queues
task_queue = Queue()
done_queue = Queue()
# Submit tasks
tasks = [(t,) for t in parameters]
for task in tasks:
task_queue.put(task)
# Start worker processes
for i in range(NUMBER_OF_PROCESSES):
Process(target=worker, args=(task_queue, done_queue)).start()
# Get unordered results
for i in range(len(tasks)):
results[i] = done_queue.get()
# Tell child processes to stop
for i in range(NUMBER_OF_PROCESSES):
task_queue.put('STOP')
print('results: ' + str(results))
现在只需要几秒钟,但输入和结果之间的映射顺序是混乱的。
results: {0: 10, 1: 0, 2: 60, 3: 40, 4: 20, 5: 80, 6: 30, 7: 90, 8: 70, 9: 50}
我意识到我正在results
基于 unordered填充done_queue.get()
,但我不确定如何正确映射到task_queue
. 有任何想法吗?还有其他方法可以使这个更清洁吗?