The problem with return new_list
is that once you return
, the function is done.
You can make things more complicated by accumulating the results and return
ing them all at the end:
listone=[1,2,3,4,5]
def new_function(value):
new_lists = []
for i in range(0,value):
new_list=listone[:]
variable=new_sum(i)
new_list[i]=variable
new_lists.append(new_list)
return new_lists
However, this is exactly what generators are for: If you yield
instead of return
, that gives the caller one value, and then resumes when he asks for the next value. So:
listone=[1,2,3,4,5]
def new_function(value):
for i in range(0,value):
new_list=listone[:]
variable=new_sum(i)
new_list[i]=variable
yield new_list
The difference is that the first version gives the caller a list of four lists, while the second gives the caller an iterator of four lists. Often, you don't care about the difference—and, in fact, an iterator may be better for responsiveness, memory, or performance reasons.*
If you do care, it often makes more sense to just make a list out of the iterator at the point you need it. In other words, use the second version of the function, then just writes:
new_lists = list(new_function(4))
By the way, you can simplify this by not trying to mutate new_list
in-place, and instead just change the values while copying. For example:
def new_function(value):
for i in range(value):
yield listone[:i] + [new_sum(i)] + listone[i+1:]
* Responsiveness is improved because you get the first result as soon as it's ready, instead of only after they're all ready. Memory use is improved because you don't need to keep all of the lists in memory at once, just one at a time. Performance may be improved because interleaving the work can result in better cache behavior and pipelining.