该execve()
调用为执行的程序提供了一个新环境。为了让程序能够访问 X 显示,您DISPLAY
至少需要保留某些环境变量。你有没有不小心被DISPLAY
新环境遗漏了?
要使 OMXPlayer 在没有 X 的情况下工作,它必须能够访问视频设备本身(/dev/video
在这种情况下,请参阅OMXPlayer 构建页面了解详细信息)。它通常被配置为允许组的所有成员video
访问它。
您可以popen("id -Gn", "r")
在您的程序中使用,以运行id -Gn
列出当前组成员身份的命令。(从文件句柄中将列表作为字符串读取,然后使用 关闭它pclose()
。)如果列表不包含video
,那么问题在于运行原始程序的用户的权限不包括对视频设备的访问。修复很简单:添加video
到用户所属的组中。
这是一个示例程序 ,run.c
用于说明 的基本用法execvp()
:
#include <unistd.h>
/* For the example main(): */
#include <sys/types.h>
#include <sys/wait.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
/* Try executing a command in a child process.
* Returns the PID of the child process,
* but does not tell whether the execution was
* successful or not.
* Returns (pid_t)-1 with errno set if fork() fails.
*/
pid_t run(char *const command[])
{
pid_t child;
child = fork();
if (child == (pid_t)-1)
return (pid_t)-1;
if (!child) {
execvp(command[0], command);
_exit(127);
}
return child;
}
int main(int argc, char *argv[])
{
pid_t child, p;
int status;
if (argc < 2 || !strcmp(argv[1], "-h") || !strcmp(argv[1], "--help")) {
fprintf(stderr, "\n");
fprintf(stderr, "Usage: %s [ -h | --help ]\n", argv[0]);
fprintf(stderr, " %s COMMAND [ ARGUMENTS .. ]\n", argv[0]);
fprintf(stderr, "\n");
return 1;
}
child = run(argv + 1);
if (child == (pid_t)-1) {
fprintf(stderr, "%s: %s.\n", argv[1], strerror(errno));
return 1;
}
fprintf(stderr, "(%s: PID %d)\n", argv[1], (int)child);
fflush(stderr);
do {
p = waitpid(child, &status, 0);
if (p == (pid_t)-1 && errno == EINTR)
continue;
} while (p != child && p != (pid_t)-1);
if (p == (pid_t)-1) {
fprintf(stderr, "(%s: %s.)\n", argv[1], strerror(errno));
return 1;
}
if (WIFEXITED(status)) {
if (WEXITSTATUS(status) == 127)
fprintf(stderr, "(%s: Could not execute command.)\n", argv[1]);
else
if (WEXITSTATUS(status) == 0)
fprintf(stderr, "(%s: Exited successfully.)\n", argv[1]);
else
fprintf(stderr, "(%s: Exited with error %d.)\n", argv[1], WEXITSTATUS(status));
} else
if (WIFSIGNALED(status))
fprintf(stderr, "(%s: Killed by %s.)\n", argv[1], strsignal(WTERMSIG(status)));
else
fprintf(stderr, "(%s: Died from unknown causes.)\n", argv[1]);
return status;
}
您可以使用例如编译和测试它
gcc -W -Wall -O3 run.c -o run
./run date --utc
请注意,该run()
函数不会尝试检查命令是否实际执行;它只是返回子进程PID,或者(pid_t)-1
如果fork()
失败。
许多实现,包括 GNU C 库popen()
,使用 127 退出状态作为执行失败的指示。也就是不是应该被执行的命令返回的,而是子进程返回的,因为命令执行失败了。以上run()
也是如此。
您可以在函数中的父进程和子进程之间使用 close-on-exec 管道run()
,让父进程知道子进程是否成功启动了所需的命令,如果没有,为什么不成功。然后,父进程也可以立即获取已失效的子进程。如果出现错误,这会给调用者留下很少的额外工作,所以我个人强烈推荐这种方法。这是一个示例实现:
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <errno.h>
/* Helper function: Close file descriptor, without modifying errno.
* Returns 0 if successful, otherwise the errno reported by close().
*/
static int closefd(const int fd)
{
int saved_errno, result;
/* Invalid descriptor? */
if (fd == -1)
return EINVAL;
/* Save errno. It's thread-local, so as long as we restore
* it before returning, no-one will notice any change in it. */
saved_errno = errno;
/* Close descriptor, and save errno (or 0) in result. */
do {
result = close(fd);
} while (result == -1 && errno == EINTR);
if (result == -1)
result = errno;
else
result = 0;
/* Restore errno. Done. */
errno = saved_errno;
return result;
}
/* Helper function: Create a close-on-exec pipe.
* Return 0 if success, errno otherwise.
*/
int close_on_exec_pipe(int fds[2])
{
int result;
result = pipe(fds);
if (result == -1) {
fds[0] = -1;
fds[1] = -1;
return errno;
}
do {
do {
result = fcntl(fds[0], F_SETFD, FD_CLOEXEC);
} while (result == -1 && errno == EINTR);
if (result == -1)
break;
do {
result = fcntl(fds[1], F_SETFD, FD_CLOEXEC);
} while (result == -1 && errno == EINTR);
if (result == -1)
break;
/* Success. */
return 0;
} while (0);
/* Failed. */
closefd(fds[0]);
closefd(fds[1]);
fds[0] = -1;
fds[1] = -1;
return errno;
}
/* Run an external command in a child process.
* command[0] is the path or name of the command,
* and the array must be terminated with a NULL.
*
* If successful, this function will return the PID
* of the child process. Otherwise, it will return
* (pid_t)-1, with errno indicating the error.
*/
pid_t run(char *const command[])
{
pid_t child, p;
int commfd[2], errcode;
/* Create a close-on-exec pipe between the parent and child. */
if (close_on_exec_pipe(commfd))
return (pid_t)-1;
/* Fork the new child process. */
child = fork();
if (child == (pid_t)-1) {
closefd(commfd[0]);
closefd(commfd[1]);
return (pid_t)-1;
}
if (!child) {
/* Child process: */
/* Close the read/parent end of the pipe. */
closefd(commfd[0]);
/* In case of C library bugs, prepare errno. */
errno = EINVAL;
/* Execute the desired command. */
execvp(command[0], command);
/* Failed. errno describes why. */
errcode = errno;
/* Send it to the parent via the pipe. */
{
const char *p = (char *)&errcode;
const char *const q = (char *)&errcode + sizeof errcode;
ssize_t n;
while (p < q) {
n = write(commfd[1], p, (size_t)(q - p));
if (n > (ssize_t)0)
p += n;
else
if (n != (ssize_t)-1)
break;
else
if (errno != EINTR)
break;
}
}
/* Close write/child end of the pipe. */
closefd(commfd[1]);
/* Exit with a failure (127). */
_exit(127);
}
/* Parent: */
/* Close the write/child end of the pipe. */
closefd(commfd[1]);
/* Try to read the execution error. */
{
char *p = (char *)&errcode;
char *const q = (char *)&errcode + sizeof errcode;
ssize_t n;
errcode = 0;
while (p < q) {
n = read(commfd[0], p, (size_t)(q - p));
if (n > (ssize_t)0)
p += n;
else
if (n != (ssize_t)-1)
break; /* n == 0 is pipe closed */
else
if (errno != EINTR)
break;
}
/* Close the read/parent end of the pipe. */
closefd(commfd[0]);
/* Pipe closed (on exec), no data read? */
if (n == (ssize_t)0 && p == (char *)&errcode) {
/* Yes, success! */
errno = 0;
return child;
}
/* Execution failed.
* If we didn't get the reason, use EINVAL. */
if (!errcode || p != q)
errcode = EINVAL;
}
/* Reap the child process. */
do {
p = waitpid(child, NULL, 0);
if (p == (pid_t)-1) {
if (errno == EINTR)
continue;
else
break;
}
} while (p != child);
/* Return with failure. */
errno = errcode;
return (pid_t)-1;
}
在我看来,这种方法的唯一缺点是在父进程中使用了额外的两个描述符,尽管只是暂时的。在几乎所有情况下,这都是无关紧要的,但如果您有一个使用大量文件描述符的服务器型应用程序,那么您应该注意这一点。
Phidgets 库使用线程。执行回调的线程与 RFID Phidgets 示例中等待按键的线程不同。一种选择是用于posix_spawn()
执行播放器(从非主线程)。
但是,一般来说,最好让主线程同时监控玩家,waitpid(child, &status, WNOHANG)
以检查玩家是否退出,并处理任何新的 RFID 事件,根据需要启动玩家(如果有新的 RFID,则终止现有实例),以及如果 RFID 移动到阅读器范围之外,甚至会杀死玩家。
这需要一个简单的线程事件队列:
#define _POSIX_C_SOURCE 200809L
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <pthread.h>
#include <stdio.h>
#include <errno.h>
/* RFID tag event types: tag read, tag lost.
*/
typedef enum {
RFID_TAG_LOST = 0,
RFID_TAG_READ
} rfid_event_type_t;
/* Structure describing all possible RFID tag events.
*/
typedef struct rfid_event_st rfid_event_t;
struct rfid_event_st {
struct rfid_event_st *next;
rfid_event_type_t type;
CPhidgetRFIDHandle rfid;
CPhidgetRFID_Protocol protocol;
void *userptr;
char tag[];
};
static pthread_mutex_t event_lock = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t event_wait = PTHREAD_COND_INITIALIZER;
static rfid_event_t *event_queue = NULL;
/* Add event to event queue.
*/
static int add_event(const CPhidgetRFIDHandle rfid,
const CPhidgetRFID_Protocol protocol,
const rfid_event_type_t type,
const char *const tag,
void *const userptr)
{
const size_t taglen = (tag) ? strlen(tag) : 0;
rfid_event_t *ev;
/* Allocate memory for a new event. */
ev = malloc(sizeof (rfid_event_t) + taglen + 1);
if (!ev)
return errno = ENOMEM;
/* Fill in the fields. */
ev->next = NULL;
ev->type = type;
ev->rfid = rfid;
ev->protocol = protocol;
ev->userptr = userptr;
if (taglen > 0)
memcpy(ev->tag, tag, taglen);
ev->tag[taglen] = '\0';
/* Lock event queue. */
pthread_mutex_lock(&event_lock);
/* Append to the event queue. */
if (event_queue) {
rfid_event_t *prev = event_queue;
while (prev->next)
prev = prev->next;
prev->next = ev;
} else
event_queue = ev;
/* Signal and unlock. */
pthread_cond_signal(&event_wait);
pthread_mutex_unlock(&event_lock);
return 0;
}
/* Get next event, waiting at most 'maxwait' seconds.
*/
static rfid_event_t *get_event(const long maxwait)
{
struct timespec until;
rfid_event_t *ev;
pthread_mutex_lock(&event_lock);
/* Event already in the queue? */
if (event_queue) {
ev = event_queue;
event_queue = ev->next;
ev->next = NULL;
pthread_mutex_unlock(&event_lock);
return ev;
}
/* No waiting requested? */
if (maxwait <= 0L) {
pthread_mutex_unlock(&event_lock);
return NULL;
}
/* Get current wall clock time, */
clock_gettime(CLOCK_REALTIME, &until);
/* and add maxwait seconds. */
until.tv_sec += maxwait;
/* Wait for a signal. */
pthread_cond_timedwait(&event_wait, &event_lock, &until);
/* Event arrived in the queue? */
if (event_queue) {
ev = event_queue;
event_queue = ev->next;
ev->next = NULL;
pthread_mutex_unlock(&event_lock);
return ev;
}
/* No event; timed out. */
pthread_mutex_unlock(&event_lock);
return NULL;
}
根据 Phidgets RFID 示例,标签和标签丢失处理程序是
int CCONV TagHandler(CPhidgetRFIDHandle RFID, void *usrptr, char *TagVal, CPhidgetRFID_Protocol proto)
{
return add_event(RFID, proto, RFID_TAG_READ, TagVal, usrptr);
}
int CCONV TagLostHandler(CPhidgetRFIDHandle RFID, void *usrptr, char *TagVal, CPhidgetRFID_Protocol proto)
{
return add_event(RFID, proto, RFID_TAG_LOST, TagVal, usrptr);
}
无需在设置完所有内容后等待按键,而是创建一个循环,例如
pid_t child = (pid_t)-1; /* Not running */
pid_t p;
rfid_event_t *event;
/* Infinite loop */
while (1) {
/* Do we have a player child process? */
if (child != (pid_t)-1) {
/* Yes. Has it exited yet? */
p = waitpid(child, NULL, WNOHANG);
if (p == child) {
/* Yes. No more player. */
child == (pid_t)-1;
}
}
/* Check for a new event.
* If we have a child, only wait one second only
* for the event; otherwise, wait up to 30 secs.
*/
if (child == (pid_t)-1)
event = get_event(30L);
else
event = get_event(1L);
/* If no event yet, start at the beginning of the loop. */
if (!event)
continue;
/*
* TODO: Handle the event.
* You can stop the existing player via e.g.
* if (child != (pid_t)-1)
* kill(child, SIGKILL);
* and then start a new one.
*/
/* Discard the event. It's dynamically allocated. */
free(event);
}
如果您启动播放器,上述循环会在一秒钟内检测到它没有播放。如果没有播放器在运行,那么循环等待 RFID 信号的时间就可以了——我用了 30 秒。